期刊文献+

一种改进的加权融合算法

A New Multiple Classifiers Weighted Fusion Algorithm
下载PDF
导出
摘要 该文以多个支持向量机分类器的输出向量为基础,运用决策模板来估计各个分类器的精度,然后使用常见的融合规则实现融合算法,并将其运用到蛋白质结构类分类当中。实验表明:该算法可有效提高分类精度,因此具有一定的应用价值。 In order to rais e the performance of multiple classifiers fusion,a new fusion algorithm based on the output vectors of support vector machine and the accuracy of the classifier based on decision template is presented in this paper.Protein structure class classification experiment reveals that this algorithm can effectively enhance t he accuracy of recognition,so it may have application value.
出处 《计算机工程与应用》 CSCD 北大核心 2004年第19期66-67,共2页 Computer Engineering and Applications
基金 西北工业大学研究生创业种子基金(编号:Z20030048)
关键词 分类器融合 支持向量机 蛋白质结构类 classif iers fusion,support vector machine,protein structure class
  • 相关文献

参考文献7

  • 1J Kittler,M Hatef,R P W Duin et al.On Combining Classifiers[J].IEEE Trans Pattern Analysis and Machine Intelligence,1998;20(3):226~239 被引量:1
  • 2Ludmila I Kuncheva.Member,IEEE,Switching Between Selection and Fusion in Combining Classifiers:An Experiment[J].IEEE,2002;32(2):146~156 被引量:1
  • 3L Xu,A Krzyzak,C Y Suen.Methods for Combining Multiple Classitiers and Their Applications in Handwritten Character Recognition[J].IEEE Trans Systems,Man,and Cybernetics,1992;22:418~435 被引量:1
  • 4赵谊虹,程国华,史习智.多分类器融合中一种新的加权算法[J].上海交通大学学报,2002,36(6):765-768. 被引量:10
  • 5Vapnik V.The Nature of Statistical Learning Theory[M].New York:Springer,1995 被引量:1
  • 6L I Kuncheva,J C Bezdek,R P W Duin.Decision templates for multiple classifier fusion:An experiment comparison[J].Pattern Recognition,2001 ;34(2):299~314 被引量:1
  • 7秦红珊,杨新岐,曹文斗.从非同源蛋白质的一级序列预测其结构类[J].生物物理学报,2002,18(2):213-222. 被引量:8

二级参考文献7

  • 1[1]Duerr B,Haettich W,Tropf H,et al.A combination of statistic and syntactical pattern recognition applied to classification of unconstrained handwritten numerals[J].Pattern Recognition,1980,12(1):189-199. 被引量:1
  • 2[2]Ahmed P,Suen C Y.Computer recognition of totally unconstrained handwritten ZIP codes[J].Pattern Recognition and Artificial Intelligence,1987,1(1):1-15. 被引量:1
  • 3[3]Xu L,Krzyzak A,Suen C Y.Methods of combining multiple classifiers and their applications to handwriting recognition[J].IEEE Trans on Sys,Man,and Cyber,1992,23(3):418-435. 被引量:1
  • 4[4]Lam L,Suen C Y.Application of majority voting to pattern recognition: an analysis of its behavior and performance[J].IEEE Trans on Sys,Man,and Cyber,1997,27(5):553-561. 被引量:1
  • 5[5]Verikas A,Lipnickas A,Malmqvist K,et al.Soft combination of neural classifiers: a comparative study[J].Pattern Recognition Letters,1999,20:429-444. 被引量:1
  • 6[6]Lam L,Suen C Y.Optimal combining of pattern classifiers[J].Pattern Recognition Letters,1995,16:945-954. 被引量:1
  • 7[7]Abhijit S P,Robert B M.Pattern recognition with neural networks in C++[M].Boca Raton: CRC Press,1994. 被引量:1

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部