摘要
为了解决满足一个微分方程且已知终值物体运动轨迹的存在性的问题,首先证明了一个重要定理,即在一定条件下,定义于实Banach空间E中的凝聚算子在E的某个闭球中有不动点,其次研究了一类终值微分方程的解.
To resolve the existence of a moved object locus governed by a differential equation with a known terminal value, the theorem, that under certain conditions the condensing operator defined in real Banach space E has a fixed point in a closed sphere of E, is proved; thus the solutions of a kind of terminal value differential equations are investigated.
出处
《西安交通大学学报》
EI
CAS
CSCD
北大核心
2005年第12期1384-1386,共3页
Journal of Xi'an Jiaotong University
基金
国家自然科学基金资助项目(10461007)
江西省自然科学基金资助项目(0411043)
关键词
凝聚算子
不动点
终值微分方程
condensing operator
fixed point
terminal value differential equation