摘要
在研究Buniakowski-Cauchy积分不等式的基础上,给出了其新的积分不等式的推广式,并用构造性方法予以证明.考察了离散型Cauchy不等式,认为只要将所得到的Buniakows-ki-Cauchy新推广积分不等式作某种特殊赋值,就能够进一步得到离散型Cauchy不等式的新的积分型推广式,从而体现它们之间的内在联系.
On the basis of studying Buniakowski - Cauchy integral inequality , this paper provides the popularization type of its new integral inequality, and proves with the constructivity method, then has analysed and discussed dispersed Cauchy inequality in reference [ 5 ] again, holds that as long as a certain special assignment integral inequality that Buniakowski - Cauchy popularize newly is got, the new integral popularizing type of dispersed Cauchy inequalityis further got , Thus be the inner link between them be.
出处
《重庆工商大学学报(自然科学版)》
2005年第6期623-624,共2页
Journal of Chongqing Technology and Business University:Natural Science Edition
基金
全国教育科学"十五"规划重点课题(EHA030431)