摘要
数列(1+1n)n的极限是高等数学的重要极限之一,大部分高数教材采用二项式展开证明单调有界性,本文通过其它四种不等式证明了单调有界,以便大家从不同角度更好地理解(1+1n)n的极限。
The Limit of sequential {(1+1/n)^n} is one of the most important limits. Most higher mathematics textbooks use the theorem of binomial spreading to prove monotone and bounded property. This essay has proved monotone and bounded property through the other four inequality in order to make us understand the (1+1/n)^n limit proving better.
出处
《运城学院学报》
2005年第5期28-30,共3页
Journal of Yuncheng University
基金
山西省重点扶持学科资助
关键词
数列极限
单调有界性
伯努利不等式
Sepuential limit
Monotone and Bounded property
Bernoulli inequality