摘要
若对图G中任意一对距离为2的顶点x,y,存在u∈N(x)∩N(y)使得N[u]N[x]∪N[y],则称G是半无爪图.对半无爪图证明以下结果:若G为n阶2-连通半元爪图,满足NC≥n2-2,则G是可迹的.
A graph G is called quasi-claw-free gragh if it satisfies the property that if d(x,y)=2,then there (exists) u∈N(x)∩N(y) such that N[u](x)∪N(y). And every claw-free gragh is quasi-claw-free gragh. In (this) paper we will prove that every 2-connected quasi-claw-free gragh G with |G|=n and NC≥n-2[]2 is traceable.
出处
《山东师范大学学报(自然科学版)》
CAS
2005年第4期6-8,共3页
Journal of Shandong Normal University(Natural Science)
基金
山东省教委科技计划项目(J01P01)
关键词
半无爪图
邻域并
可迹
quasi-claw-free graph
neighborhood union
traceable