摘要
本文给出下列定理:设G是阶为n≥3的连通无爪图,如果对每对不同的非邻顶点x,y有2|N(x)UN(y)|+d(x)+d(y)≥2n-5,则G是可遍历的.
In this paper, we present the following theorem: let G be a connected, claw free-graph of order n≥3, if for each pair of distinct nonadjacent vertices x and y??then G is traceable.
关键词
无爪图
可遍历
邻域并
claw-free graphs
traceable neighborhood union