摘要
对Sierpinski三角、Sierpinski“地毯”、Koch曲线、一些树形分形等给出MATIAB模拟程序及其运行结果。 分形作为双曲迭代函数系统的吸引子,根据程序中迭代的选取,将分形模拟分为确定迭代法和随机迭代法。在第 一种方法中,利用了画图命令plot,line,patch和fill。在第二种方法中,将随机迭代出的点利用命令plot画出。
The MATLAB simulating programs and their running results are given for Sierpinski triangle, Sierpinski “carpet”, Koch curve, some tree-shaped fractals, etc. A fractal is regarded as the attractor for the system of hyperbolic iterated functions. Based on the choice of iteration in the program we clarify the fractal simulation into definitely iterated method and randomly iterated method. In the first method we use the drawing command plot, line, patch and fill. In the second method we draw the point yielded from the random iteration by the command plot.
出处
《天津商学院学报》
2005年第6期60-64,共5页
Journal of Tianjin University of Commerce
基金
国家自然科学基金(10461005)天津市教委科技发展基金(20050404)