期刊文献+

阳极氧化铝模板上扩散聚合法制备聚苯胺纳米管(线)阵列 被引量:3

Synthesis of polyaniline nano-arrays on anodic aluminum oxide template by the diffused polymerization
下载PDF
导出
摘要 以多孔阳极氧化铝(AAO)为模板,利用扩散聚合法让苯胺单体溶液和氧化剂溶液在一维纳米孔道中相互扩散,在孔内形成聚苯胺(PANI)纳米管和纳米线阵列。利用SEM、TEM、IR和XRD等检测技术对阵列进行表征。结果表明,聚合反应优先发生在孔壁上,并沿孔壁逐层生长,直至形成实心的纳米线阵列。在孔径为60nm的AAO模板内,扩散聚合40min可形成聚苯胺纳米管阵列,2h后形成聚苯胺纳米线阵列;聚苯胺纳米管(线)中同时包含结晶相和无定型相结构。用二探针法测量PANI/AAO复合阵列电阻,计算出单根聚苯胺纳米线的电导率为21.4S/cm。此外,对扩散聚合过程中聚苯胺纳米管(线)阵列的形成原因进行了初步分析和探讨。 In this paper,the polyaniline (PANI) nanotubles and nanowires arrays were simply prepared by diffused polymerization,which the monomer and the oxidant reagent diffused toward each other through the pore of anodic aluminium oxide (AAO) film. The structure of PANI nano-array was characterized by scanning electron spectroscopy (SEM), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The results show that the nascent polymer is preferentially deposited on the pore walls and then grows by layer upon layer along the pore walls until the solid nanowires are formed. In the AAO film with 60nm pores,the PANI nanotubles array can be formed by diffused polymerization for 40 min and the PANI nanowires array can be formed for 2h. The PANI nanowires and nanotubles structure is composed of both the crystalline phase and the amorphous phase. The electronic conductivity of PANI/AAO composite arrays was measured directly using two-probes method,and then the conductivity of individual PANI nanowire (21.4S/ cm) was calculated. Furthermore,a possible formation mechanism of PANI nanotuble and nanowire was preliminarily discussed.
出处 《功能材料》 EI CAS CSCD 北大核心 2005年第11期1765-1768,共4页 Journal of Functional Materials
基金 国家自然科学基金资助项目(50271046) 国家教育部博士点基金资助项目(20030056034)
关键词 聚苯胺 多孔阳极氧化铝 扩散聚合法 纳米 阵列 电导率 polyaniline anodic aluminium oxide film diffused polymerization nan-arrays conductivity
  • 相关文献

参考文献14

  • 1Menon V, Lei J, Martin C R, [J ]. Chem Mater, 1996,8;2382-2390. 被引量:1
  • 2Parthasarathy R V, Martin C R. [J]. Nature, 1994,399:298-301. 被引量:1
  • 3Genies E M. Boyle A, Laokowski M. et al,[J]. Svruhetic Metals. 1990,38 : 139-182. 被引量:1
  • 4Cepak V M, Martin C R, [J]. Chem Mater, 1999, 11:1363-1367. 被引量:1
  • 5Delvaux M,Duchet J.Stavaux P,et al, [J]. Synthetic Metals,2000,113:275-280. 被引量:1
  • 6Wang Z,Chen M,Li H L. [J]. Materials Science and Engineering, 2002, A328 : 33-38. 被引量:1
  • 7Duchet J, Legras R, Demousner-Champagne S. [J ]. Synthetic Metals, 1998,98 : 113-122. 被引量:1
  • 8Macdonald D D. [J]. J Electrochem Soc,1993,140(3):27-30. 被引量:1
  • 9Pouget J P,Józefowicz M E,Epstein A J,et al.[J]. Macromolecules, 1991,24 : 779-789. 被引量:1
  • 10Jozefowicz M E,Laversanne R,Javadi H H S,et al. [J].Phys Rev B,1989,39:12958-12961. 被引量:1

二级参考文献58

  • 1[6]Su W, Iroh J O. Electrochim. Acta, 1999, 44: 4655-4665 被引量:1
  • 2[7]Alikacem N, Marois Y, Zhang Z, et al. Artif. Organs, 1999, 23: 910-919 被引量:1
  • 3[8]Omastova M, Simon F. J. Mater. Sci., 2000, 35: 1743-1749 被引量:1
  • 4[9]Zeng K, Tachikawa H, Zhu Z Y, et al. Anal. Chem., 2000, 72: 2211-2215 被引量:1
  • 5[10]Mikito Y, Takashi N, Tomoyuki H, et al. Sens. Actuators, 2000, B66(1-3): 77-79 被引量:1
  • 6[11]Kemp N T, Flanagan G U, Kaiser A B, et al. Synth. Met., 1999, 101: 434-435 被引量:1
  • 7[12]Lin C W, Yang J Y, Hwang B J. J. Chin. Inst. Chem. Eng., 1999, 30: 449-456 被引量:1
  • 8[13]Kim B C, Spinks G, Too C O, et al. React. Funct. Polym., 2000, 44: 31-40 被引量:1
  • 9[14]Takamatsu T, Taketani Y. JP 11 121 279, 1999 被引量:1
  • 10[15]Kojima Y, Kamikawa H, Takamatsu T. JP 11 121 280, 1999 被引量:1

共引文献4

同被引文献73

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部