期刊文献+

Engel连分数展式中的若干度量性质

SOME METRIC PROPERTIES IN ENGEL-CONTINUED FRACTION EXPANSIONS
下载PDF
导出
摘要 研究了Engel连分数展式的度量性质.与普通连分数一样,证明了部分商的增长性满足0-1率.通过构造一族恰当的集合,得到了部分商增长速度的上下极限. In this paper, we consider the metric properties in the expansion of Engel continued fraction. Similar to regular continued fraction, we show the growth rate in the partial quotients satisfies the so-called 0-1 law. Moreover, according to constructing a family of proper sets, we obtain the upper and lower limits of the speed of growth rate in the partial quotients.
作者 王保伟
出处 《数学杂志》 CSCD 北大核心 2005年第5期541-544,共4页 Journal of Mathematics
基金 国家重点基础研究发展规划(973计划)项目
关键词 Engel级数展式 Engel连分数展式 度量性质 Engel series expansion Engel-continued fraction expansion metric properties.
  • 相关文献

参考文献5

  • 1Hartono Y.,Kraaikamp C., Schweiger F.. Algebraic and ergodic properties of a new continued fraction algorithm with non-decreasing partial quotients[J]. J. Théor. Nombres Bordeaux, 2002, 14(2) : 497-516. 被引量:1
  • 2Rényi. A. A new approach to the theory of Engel's series[J]. Ann. Univ. Sci. Budapest, Sectio Math. 1962, 5: 25-32. 被引量:1
  • 3Schweiger F. Metrische Ergebnisseüber den Kotangensalgorithmus[J]. Acta Arith. 1975, 26: 217-222. 被引量:1
  • 4Thaler. M. Maximilian σ-endliche invariante Masse für Engelschen Reihen[J]. Anz. Osterreich.Akad. Wiss. Math.-Natur. Kl, 1979, 116(2): 46-48. 被引量:1
  • 5Galambos J. The ergodic properties of the denominators in the Oppenheim expansion of real numbers into infinite series of rationals[J]. Quart. J. Math. Oxford Sec. Series, 1970, 21(2):177-191. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部