期刊文献+

两类Chemotaxis模型解的性质

THE BEHAVIOR OF THE SOLUTIONS FOR TWO SYSTEMS MODELLING CHEMOTAXIS
下载PDF
导出
摘要 本文讨论了抛物-双曲和抛物-常微两个Chemotaxis模型初边值问题解的性质.利用形式级数展开的方法,得到全局解在微小扰动下,导致解在有限时间内爆破,并对爆破时间进行了估计.因此说明了这种模型空间齐性解的不稳定性. In this paper, we study two systems modelling chemotaxis, with initial and boundary value condition. By making use of formal series expansion, we prove that for their spatially homogeneous global solutions, a slight perturbation of initial values would lead to blow-up in finite time. We conclude that global solutions for these two models are unstable.
出处 《数学杂志》 CSCD 北大核心 2005年第6期625-630,共6页 Journal of Mathematics
基金 国家科技部973核心数学项目(10025107)
关键词 爆破 全局解 扰动 CHEMOTAXIS blow-up global solution perturbation Chemotaxis
  • 相关文献

参考文献5

  • 1Othemer H. G. , Stevens A. Aggregation, blow-up, and collapse : The abcs of taxis and reinforced random walks[J]. SIAM. J. Appl. Math. 1997,57(4) :1044-1081. 被引量:1
  • 2Nagai. T. Behavior of solutions to parabolic-elliptic systems modelling chemotaxis[J]. J. Korean.Math. Soc. 2000,37: 721-733. 被引量:1
  • 3Hellen T, levine H.A. Blow-up and pattern formation in hyperbolic models for chemotaxis in 1-d [J].Z. Angew. Math. Phys. 2003(3),54:1-30. 被引量:1
  • 4levine H.A., Sleeman B. D. A system of reaction diffusion equations arising in the theory of reinforced random walks[J]. SIAM. J. Appl. Math. 1997,57 (3): 683-730. 被引量:1
  • 5叶其孝 李正元.反应扩散方程引论[M].北京:科学技术出版社,1996.147-154. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部