期刊文献+

具有凝固平直界面的温度场的扰动分析

The Perturbation analysis of the temperature field to straight interface solidifying
下载PDF
导出
摘要 考虑具有凝固平直界面的二维非稳态晶体生长过程,由于凝固过程中溶质原子的吸附作用,电磁搅拌等诸多因素的干扰,在固液平直界面会产生扰动,从而影响界面的形态。本文研究凝固过程中具有固液平直界面的温度场扰动分析,用多重尺度法求出一阶渐近解,指出在扰动条件下,温度变化沿晶体生长方向呈指数衰减,提出扰动条件下固液平直界面晶体生长的稳定性条件。这为晶体生长的理论研究及实验工作提供了理论依据。 Consider the two-dimentional non-stable crystal growth question under the straight interface solidifying. The straight interface of firm liquid will produce the perturbation, thus it will influence the shape of the interface because of the adsorption of the solute and atom in the course, the interference of a great deal of factors that mix electromagnetically, etc. in the solidifying course. This paper studies the perturbation analysis of temperature field with straight interface of solid liquid in the solidifying course and use the MVE method to solve the one step question. Then the paper points out the temperature change presents the index and decays along the crystal growth direction, and proposes the stability condition of straight interface crystal growth of the solid liquid under the perturbation condition, which has offered theoretical foundation for theoretical research of crystal growth and experimental work.
出处 《贵州师范大学学报(自然科学版)》 CAS 2005年第4期77-81,共5页 Journal of Guizhou Normal University:Natural Sciences
基金 国家重大基础研究项目(No.G20000672061)
关键词 晶体生长 偏微分方程 多重尺度法 可解性条件 crystal growth partial differential equation MVE method solvability condition
  • 相关文献

参考文献16

二级参考文献20

  • 1黄卫东,丁国陆,周尧和.非稳态过程与凝固界面形态选择[J].材料研究学报,1995,9(3):193-207. 被引量:17
  • 2Mullins W W, Sekeka R F. Stability of a planar interface during solidification of a dilute binary alloy [J]. J Appl Phys, 1964, 35:444. 被引量:1
  • 3Mullins W W, Sekeka R F. Morphological stability of a particle growing by diffusion or heat flow [J]. J Appl Phys, 1963, 34:323. 被引量:1
  • 4Langer J S. Instability and pattern formation in crystal growth [J]. Rev Mod Phys, 1980, 52:1. 被引量:1
  • 5Langer J S, Hong D A. Solvability conditions for dendritic growth in the boundary-layer model with capillary anisotropy [J]. Phys Rev A, 1986, 34:1462. 被引量:1
  • 6Langer J S, Muller-Krumbhaar H. Theoretical growth--elements of a stability analysis; Instability in the limit of vanishing surface tension; effects of surface tension [J].Acta Metall, 1978, 26:1681. 被引量:1
  • 7Xu J J. Interface wave theory of solidification--dendritic pattern formation and selection of tip velocity [J]. Phys Rev A, 1991,15(43): 930. 被引量:1
  • 8Xu J J. Generalized needle solution, instabilities and pattern formation [J]. Phys Rev E, 1996, 53(5): 5051. 被引量:1
  • 9Xu J J. Interface Wave Theory of Pattern Formation [M].Springer, 1998. 被引量:1
  • 10Wang Mu, Zhong Sheng, Yin Xiaobo, et al. Nanostructured copper filaments in electrochemical deposition [J].Phys Rev lett, 2001, 86:3827. 被引量:1

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部