摘要
从一些控制方程已知的微分动力系统出发,利用它们不同分量、不同时间间隔的解序列重构相空间和原本相空间两种方式所得分维结果进行了比较,发现了一些有意义的事实,并探讨了用一维时间序列重构相空间确定吸引子维数的理论,揭示出其中存在的本质问题。最后指出,只有完全搞清动力系统的单分量序列采用怎样的延滞时间τ和怎样的采样间隔H延拓后才能保证重构相空间和原本相空间的度量性质不变时,我们才能获得真实、可靠、有用的结果。
Based on the some differential dynamic systems of known control equations, it isfound that there existed some essential problems in estimating the fractal dimensions ofattractors with one dimensional time series. by a comparison between the two fractal dimension results of the reconstructed phase-space, which is made according to their solution series of different components and different time intervals, and of the originalphase - space. Some significant facts are found. Then. the theory of reconstructedphase-space with one dimensional time series is discussed and some essential problemsexited in it are found. Finally, it should be pointed out that the real, reliable, useful results would be obtained only when the clear understanding of what kind of the delaytime and the sample interval H are used in a single--variable of the dynamic system tokeep the same measure nature between the reconstructed phase--space and the originalphase - space.
出处
《气象学报》
CSCD
北大核心
1996年第3期312-323,共12页
Acta Meteorologica Sinica
基金
国家基础性重大关键项目
"气候动力学和气候预测的研究"资助
关键词
时间序列
吸引子
维数
相空间
大气动力学
Fractal dimension,One-dimension time series,Dynamic system,Original phase-space,Reconstructed phase-space,Attractor