摘要
The plastic load-bearing capacity of ductile composites such as metal matrix composites is studied with an insight into the microstructures. The macroscopic strength of a composite is obtained by combining the homogenization theory with static limit analysis, where the temperature parameter method is used to construct the self-equilibrium stress field. An interface failure model is proposed to account for the effects of the interface on the failure of composites. The static limit analysis with the finite-element method is then formulated as a constrained nonlinear programming problem, which is solved by the Sequential Quadratic Programming (SQP) method. Finally, the macroscopic transverse strength of perforated materials, the macroscopic transverse and off-axis strength of fiber-reinforced composites are obtained through numerical calculation. The computational results are in good agreement with the experimental data.
The plastic load-bearing capacity of ductile composites such as metal matrix composites is studied with an insight into the microstructures. The macroscopic strength of a composite is obtained by combining the homogenization theory with static limit analysis, where the temperature parameter method is used to construct the self-equilibrium stress field. An interface failure model is proposed to account for the effects of the interface on the failure of composites. The static limit analysis with the finite-element method is then formulated as a constrained nonlinear programming problem, which is solved by the Sequential Quadratic Programming (SQP) method. Finally, the macroscopic transverse strength of perforated materials, the macroscopic transverse and off-axis strength of fiber-reinforced composites are obtained through numerical calculation. The computational results are in good agreement with the experimental data.
基金
Project supported by the Key Grant Project of Chinese Ministry of Education (No.0306)
the National Foundationfor Excellent Doctoral Dissertation of China (No.200025).