摘要
睡眠的正确分期是睡眠研究的基础,脑电的非线性参数可以表征不同的睡眠状态。本研究计算睡眠脑电的关联维数和近似熵,通过统计和比较发现关联维数不随嵌入维数的增加而饱和,但其相对大小能有效区分各种睡眠状态;近似熵计算简单,性能稳定,可较好地表征不同睡眠期;相对关联维数和近似熵从不同角度表现了脑电(大脑)复杂性的相同演变规律清醒时复杂性最高,而且波动最大,随着睡眠加深,复杂性降低且变异减小,REM期复杂性基本介于S1期和S2期之间。
Correct sleep scoring is the base of sleep studying; nonlinear features of EEG can represent different sleep stages. In this paper, correlation dimension (D2) and approximate entropy (ApEn) of sleep EEG have been calculated. The statistical results reveal that: D2 does not come to be saturated when the embedding dimension increases, but the relative value of D2 can effectively distinguish different sleep stages. ApEn has the advantage of calculating simply, steady result and representing preferably different sleep stages. ApEn and the relative value of D2 reveal, from different point of view, the same rule about EEG (brain) complexity changing, that is, both complexity and its fluctuation are maximal in the subject's awake hour, are decreasing with the deepening of sleep, but the complexity in REM is about the level between S1 and S2.
出处
《生物医学工程学杂志》
EI
CAS
CSCD
北大核心
2005年第4期649-653,共5页
Journal of Biomedical Engineering
基金
国家自然科学基金资助项目(60071023)