期刊文献+

量子密钥分发网方案的改进设计 被引量:3

Scheme design and improvement of quantum key distribution network
下载PDF
导出
摘要 量子密码术要走向实用化,必须实现多用户间的量子密钥分配。首先介绍了基于EPR对的E91量子密钥分发方案。利用该协议,我们在现有量子密钥分发网方案的基础上提出了一种实现多用户网络下任意多个用户之间的密钥分发方案,并融合波分复用技术对级联式环型量子密钥分发网方案进行了改进。 For the practical and commercial use of quantum cryptography, we need to distribute keys among many users. We introduce E91 quantum key distribution scheme, which is based on EPR pair. Then. based on tile E91 scheme, we propose a quantum key distribution scheme on quantum cryptography network with many users where communications among any users can occur: also. combining with WDM technology, we made an improvement on the cascaded loop quantum key distribution network scheme.
出处 《量子电子学报》 CAS CSCD 北大核心 2005年第5期699-703,共5页 Chinese Journal of Quantum Electronics
基金 湖北省自然科学基金资助课题(2003ABA008)
关键词 量子信息学 量子力学 量子密钥分发 多用户分发网方案 quantum information quantum mechanics quantum key distribution multi-user network scheme
  • 相关文献

参考文献6

  • 1Ekert A K. Quantum cryptography based on Bell's theorem [J]. Phys. Rev. Lett., 1991, 67: 661. 被引量:1
  • 2Clauser J F, Horne M A, Shimony A, et al. Proposed experiment to test local hidden-variable theories [J]. Phys.Rev. Lett., 1969, 23: 880. 被引量:1
  • 3池灏,章献民,朱华飞,陈抗生.量子密码的原理、应用和研究进展[J].光电子.激光,2001,12(1):105-108. 被引量:7
  • 4Townsend P D. Quantum cryptography on multiuser optical fibre networks [J]. Nature, 1997, 385: 47-49. 被引量:1
  • 5Xue P, Li C F, Guo G C. Conditional efficient multi-user quantum cryptography network [J]. Phys. Rev. A, 2002,65: 022317. 被引量:1
  • 6Townsend P D. Quantum cryptography on optical fiber networks [J]. Optical Fiber Technology, 1998, 4: 345-370;365-366. 被引量:1

二级参考文献17

  • 1[1]H Bennett,G Brassard,A K Ekert.Quantum Cryptography[J]. Scientific American,1992,267(4):26-33. 被引量:1
  • 2[2]J Blow,S J D Phoenix.On a fundamental theorem of quantum cry ptography[J].J.of Mod.Opt,1993,[ STHZ 40(1):33-36. 被引量:1
  • 3[3]D Townsend,I Thompson.A quantum key distribution channel b ased on optical fibre[J].J.of Mod.Opt,1994,41(12):2425. 被引量:1
  • 4[4]K Ekert.Quantum cryptography based on Bells theorem[J] .Phy.Rev.Lett,1991,67[ STBZ (6):661-663. 被引量:1
  • 5[5]d Espagnat.The quantum theory and reality[J].Scientific American.1979,247(5 2):158-181. 被引量:1
  • 6[6]H Bennett.Quantum cryptography using any two nonorthogonal s tates[J].Phy.Rev.Lett,1992,68(21):3121-3124. 被引量:1
  • 7[7]M Barnett,B Hunttner,S J D Phoenix.Eavesdropping strategies and rejected-data protocols in quantum cryptography[J].J.of .Mod.Opt,1993,40(12):2 501-2513. 被引量:1
  • 8[8]Goldenberg,Lev Vaidman.Quantum cryptography based on orthogo nal states[J].Phy.Rev.Lett,1995,[ STHZ 75(7):1239-1243. 被引量:1
  • 9[9]D Townsend.Secure key distribution systems based on quantum cryptography[J].Electron.Lett,1994 ,30(10):809-811. 被引量:1
  • 10[10]Marand,P D Townsend.Quantum key distribution over distance s as long as 30 km[J].Opt.Lett,1995,20(16):1695-1697. 被引量:1

共引文献6

同被引文献30

引证文献3

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部