期刊文献+

常规给水处理工艺处理效率的神经网络预测与控制 被引量:5

Efficiency prediction of the conventional water treatment system by ANN model
下载PDF
导出
摘要 建立了常规给水处理工艺处理效率神经网络预测模型和混凝剂投量预测模型。应用结果表明,建立的预测模型具有较高的预测精度:对浊度和UV254处理效率的相关系数(R2)分别为0.86和0.80,对混凝剂投加量的预测精度相关系数为0.72。模型的预测精度可基本满足常规工艺的在线控制和实时调控,使水处理系统在原水水质变化情况下,实现系统优化运行控制。分析模型误差的原因,并对比偏最小二乘回归模型说明神经网络模型的精度,指出该模型在系统优化运行中的可行、及时、准确性。 This paper attempted to accurately and quickly predict the efficiency of the conventional water treatment system and the coagulant dosage with the Artificial Neural Network (ANN) modeling technique. An ANN model developed in the paper was applied to one water plant and the result showed that the ANN model could be used to predict the treatment efficiency of the system with the correlation coefficient (R^2) of 0.86 and 0. 80 for turbidity and ultraviolet absorbance (UV254) respectively, and with the correlation coefficient (R2) for predicting the dosing rate at 0. 72. All the efforts are prepared to realize the online and real time control when water quality was greatly changed. The reason and conditions of the error was analyzed, and as a result, the ANN model could be used to direct the water treatment system feasibly, promply and precisely when compared with the PLS mode.
出处 《西安建筑科技大学学报(自然科学版)》 CSCD 北大核心 2005年第4期488-491,共4页 Journal of Xi'an University of Architecture & Technology(Natural Science Edition)
基金 国家高技术研究发展计划(863)项目(2002AA601140) 北京市水质科学与水环境恢复工程重点实验室开放课题 陕西省自然科学基金项目(2002E214)
关键词 预测模型 神经网络 控制模型 常规工艺 偏最小二乘回归 Forecasting Modeling Artificial Neural Network Control Modeling Conventional Water Treatment System Partial Least Square Regression
  • 相关文献

参考文献8

  • 1Da-Sung Joo,Dong-Jin and Heekyung Park . Determination of optimal coagulant dosing rate using an artificial neural network [J]. Journal of water supply -Research and Technology-AQUA, 2000, 49 (1) : 49-55. 被引量:1
  • 2Baxter C W,Stanley S J,and Zhang Q. Development of a full-scale artificial neural network model for the removal of natural organic matter by enhanced coagulation , J. Water SRT -Aqua , 1999,48 (4) - 129-136. 被引量:1
  • 3Boger Z. Applations of neural networks to water and wastewater treatment plant operation. ISA Transactions,1992,31(1):25-31. 被引量:1
  • 4白桦,李圭白.基于神经网络的混凝投药系统预测模型[J].中国给水排水,2002,18(6):46-47. 被引量:13
  • 5田禹,王宝贞,周定.基于 BP 人工神经元网络的臭氧生物活性炭系统建模研究[J].中国给水排水,1998,14(3):24-27. 被引量:13
  • 6闻新 周露 王丹力 熊晓英.MATLAB神经网络应用设计[M].北京:科学出版社,2002.. 被引量:81
  • 7苏金明..MATLAB工具箱应用[M],2004.
  • 8Krofta M Herath B, Burgess D, etal. An attempt to understand dissolved air flotation using multivariate data analysis[J]. Wat. Sei. Teeh. , 1995,31(3):191-201. 被引量:1

二级参考文献2

共引文献104

同被引文献46

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部