期刊文献+

基于改进遗传算法的多示例神经网络优化 被引量:2

Optimizing multi-instance neural networks based on an improved genetic algorithm
下载PDF
导出
摘要 为了提高预测准确性,构造了一类优化多示例神经网络参数的改进遗传算法,借助基于反向传播训练的局部搜索算子、排挤操作和适应性操作概率计算方式来提高收敛速度和防止早熟收敛。通过公认的数据集上实验结果的分析和对比,证实了这个改进的遗传算法能够明显地提高多示例神经网络的预测准确性,同时还具有比其他算法更快的收敛速度。 In order to achieve higher predictive accuracy, an improved genetic algorithm for optimizing multi-instance neural networks was presented. Convergence rate was increased and premature convergence was overcome by means of local search operator, suppress operator and adaptive calculations of probabilities for operators. Some experiments on well-known test data show that multi-instance neural networks that are optimized by the improved genetic algorithm heighten significantly predictive accuracy and computational expensiveness of the algorithm is less than other algorithms.
出处 《计算机应用》 CSCD 北大核心 2005年第10期2387-2389,2412,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(6023403060404021)
关键词 多示例神经网络 多示例学习 遗传算法 multi-instance neural networks multi-instance learning genetic algorithms
  • 相关文献

参考文献7

  • 1李敏强,徐博艺,寇纪淞.遗传算法与神经网络的结合[J].系统工程理论与实践,1999,19(2):65-69. 被引量:174
  • 2TomM Mitchell.机器学习[M].北京:机械工业出版社,2003.. 被引量:16
  • 3DIETTERICH TG, LATHROP RH, LOZANO - PEREZ T. Solving the multiple-instance problem with axis -parallel rectangles [ J].Artificial Intelligence, 1997, 89( 1 -2): 31 -71. 被引量:1
  • 4RAMON J, RAEDT LD. Multi-instance neural networks [A]. Proceedings of ICML-2000 workshop on Attribute - Value and Relational Learning[ C], 2000. 被引量:1
  • 5SIDDIQUE MNH, TOKHI MO. Training neural networks: backpropagation vs. genetic algorithms [ A]. In: Proceedings of the IEEE International Joint Conference on Neural Networks[ C], 2001,4:2673-2678. 被引量:1
  • 6SRINVAS M, PATNAI LM. Adaptive probabilities of crossover and mutation in genetic algorithms [ J]. IEEE Trans. Syst., Man, and Cybern, 1994, 24 (4): 656 - 666. 被引量:1
  • 7BLAKE C , KEOGH E , MERZ CJ . UCI Repository of Machine Learning Databases. http:∥www. ics. uci. edu /~ mlearn/MLRepository. html, Department of Information and Computer Science, University of California, Irvine, CA, 1998. 被引量:1

二级参考文献4

  • 1刘豹.模糊工程[J].决策与决策支持系统,1995(3):1-5. 被引量:2
  • 2李敏强 纪仕光 等.基于网络描述的系统模型及其管理系统.复杂巨系统理论·方法·应用[M].北京:科学技术文献出版社,1994.. 被引量:1
  • 3刘豹,决策与决策支持系统,1995年,5卷,3期,1页 被引量:1
  • 4李敏强,复杂巨系统理论.方法.应用,1994年 被引量:1

共引文献188

同被引文献14

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部