摘要
对于某种三维椭圆边值问题,本文给出了长方体剖分下张量积二次长方体有限元的第一型弱估计以及离散导数Green函数的W1,1半范估计,利用这两个估计本文获得了张量积二次长方体有限元梯度最大模的超逼近.进而,由超逼近也可以得到这种有限元梯度最大模的超收敛.
For an elliptic boundary value problem in three dimensions this paper will give the weak estimate of the first type for tensor-product quadratic rectangular parallelepiped elements and the estimate for the W^1' 1 seminorm of the discrete derivative Green's function over rectangular parallelepiped partitions of the domain, from which this paper will obtain maximum-norm superapproximation of the gradient for the tensor-product quadratic rectangular parallelepiped finite element. Furthermore, by this superapproximation, maximum-norm superconvergence of the gradient for the finite element can also be obtained.
出处
《计算数学》
CSCD
北大核心
2005年第3期267-276,共10页
Mathematica Numerica Sinica
基金
国家自然科学基金资助项目(10371038).