期刊文献+

非线性强增生算子方程解的迭代逼近定理 被引量:1

Iterative approximation theorem on solutions to nonlinear strongly accretive operator equations
下载PDF
导出
摘要 设1<P≤2,X是实P-一致光滑的Banach空间,T:X→是强增生算子.研究了用带误差的Ishikawa迭代程序:来逼近方程Tx=f解的问题,其中x0∈X,{un},{vn}是X中的有界序列,{αn},{βn}是[0,1]中的实数列.在无需假设条件αn→0之下,证明了,当T连续时,迭代序列{Xn}强收敛到方程Tx=f的唯一解. Let 1 〈 p ≤ 2 , X be a rea lp -uniformly smooth Banachspace, and T:X→X be a strongly accretive operator. The problem of approximating solutions to theequation Tx= f by the Ishikawa iterative process with errors (xn+1)=(1-αn)xn+αn(f-Tyn+yn)+un, yn=(1-βn)xn+βn(f-Txn+xn)+υn,n≥0,) is investigated, where x0∈X,{un}{υn} are bounded sequences in X, and {αn},{βn}are real sequences in [0,1 ] .Without the assumption that αn→0,it is shownthat if T is continuous then the iterative sequence {xn}converges strongly to the unique solution to the equation Tx = f.
出处 《上海师范大学学报(自然科学版)》 2005年第3期1-6,共6页 Journal of Shanghai Normal University(Natural Sciences)
基金 上海市曙光计划的资助项目(BL200404).
关键词 强增生算子方程 带误差的Ishikawa迭代程序 P-一致光滑的Banach空间 strongly accretive operator equation Ishikawa iterative process with errors p-uniformly smooth
  • 相关文献

参考文献10

  • 1曾六川,杨亚立.Banach空间中Lipschitz严格伪压缩映象的迭代逼近[J].数学年刊(A辑),1999,20A(3):389-398. 被引量:13
  • 2BROWDER F E.Nonlinear mappings of nonexpansive and accretive type inBanach spaces [J].Bull Amer Math Soc,1967,73:875-882. 被引量:1
  • 3KATO T.Nonlinear semigroups and evolution equations [J].J Math Soc Japan,1967,18/19:508-520. 被引量:1
  • 4LIU L S.Ishikawa and Mann iterative process with errors for nonlinearstrongly accretive mappings in Banach spaces [J].J Math Anal Appl,1995,194:114-125. 被引量:1
  • 5ZENG L C.Iterative construction of solutions to nonlinearequations of strongly accretive operators in Banach spaces [J].J Math Res & Exposition,1998,18(3):329-334. 被引量:1
  • 6XU Z B,ROACH G F.Characteristic inequalities in uniformly convex and uniformly smooth Banach spaces [J].J Math Anal Appl,1991,157:189-210. 被引量:1
  • 7XU H K.Inequalities in Banach spaces with applications [J].Nonlinear Analysis-TMA,1991,16:1127-1138. 被引量:1
  • 8ASPLUND E.Positivity of duality mappings [J].Bull Amer Math Soc,1967,73:200-203. 被引量:1
  • 9MORALES C.Pseudo-contractive mappings and Ieray-Schauder boundary condition [J].Comment Math Univ Carolina,1979,20:745-746. 被引量:1
  • 10曾六川.Lipschitz强增生算子方程解的Ishikawa迭代逼近[J].数学杂志,2004,24(5):524-530. 被引量:5

二级参考文献18

  • 1F E Browder. Nonlinear mappings of nonexpansive and accretive type in Banach spaces [J]. Bull.Amer. Math. Soc., 1967,73:875-882.?A 被引量:1
  • 2T Karo. Nonlinear semigroups and evolution equations [J]. J Math. Soc. Japan. , 1967,18/19:508-520.?A 被引量:1
  • 3C E Chidume. An iterative process for nonlinear Lipschitzian strongly accretive mappings in Lp spaces[J]. J Math. Anal. Appl., 1990,151:453-461.?A 被引量:1
  • 4C E Chidume. Global iteration schemes for strongly pseudo-contractive maps [J]. Proc. Amer.Math. Soc., 1998,126:2641-2649.?A 被引量:1
  • 5L C Zeng. Iterative approximation of solutions to nonlinear equations of strongly accretive operators in Banach spaces [J]. Nonlinear Anal. TMA, 1998,31(5-6):589-598.?A 被引量:1
  • 6L C Zeng. Error bounds for approximation solutions to nonlinear equations of strongly accretive operators in uniformly smooth Banach spaces [J]. J. Math. Anal. Appl. , 1997,209:67-80.?A 被引量:1
  • 7C Morales. Pseudocontractive mappings and Leray-Schauder boundary condition [J]. Comment.Math. Univ. Carolin., 1979,20(4):745-746.?A 被引量:1
  • 8Liu, L S Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces [J]. J Math. Anal. Appl. , 1995,194:114-125.?A 被引量:1
  • 9Tan, K K and Xu, H K Iterative solutions to nonlinear equations of strongly accretive operators in Banach spaces [J]. J Math. Anal. Appl. , 1993,178:9-21.?A 被引量:1
  • 10K P R Sastry and G V R Babu. Approximation of fixed points of strictly pseudocontractive mappings on arbitrary closed, convex sets in a Banach space [J]. Proc. Amer. Math. Soc. , 2000,128:2907-2909.?A 被引量:1

共引文献15

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部