摘要
设E是任意实Banach空间,T:E→E是Lipschitz的强增生算子.证明了,带误差的Ishikawa迭代序列强收敛到方程Tx=f的唯一解.特别地,还给出了Ishikawa迭代序列的收敛率估计.另一方面,一个相关结果,讨论了E中Lipschitz强伪压缩映象的不动点的带误差的Ishikawa迭代序列的收敛性.
Let E be an arbitrary real Banach space, and T :E- E be a Lipschitz strongly accretive operator. It is shown that the Ishikawa iterative sequences with errors converge strongly to the unique solution of the equation Tx=f. In particular, the convergence rate estimates are also given for the Ishikawa iterative sequences. On the other hand, a related result discusses the convergence of the Ishikawa iterative sequences with errors for fixed points of Lipschitz strongly pseudocontractive mappings in E.
出处
《应用泛函分析学报》
CSCD
2002年第3期274-279,共6页
Acta Analysis Functionalis Applicata
基金
高等学校优秀青年教师教学和科研奖励基金
国家自然科学基金(19801023)