摘要
本文考虑的问题是二维粘性渠流.对0到2000之间的雷诺数,计算了平稳扰动的Couette-Poiseuille流的下游特征值,其特征方程类似于Orr-Sommerfeld方程。所用的方法是谱方法和初值方法(复合矩阵方法).就几种有趣的流量,给出了相应的特征值的计算结果。这些特征值确定了扰动的衰减率.
The problem considered is that of twe-dimensional viscous flow in a straight channel. The decay of a stationary perturbation from the Couette-Poiseuille flow in the downstream is sought.A differential eigenvalue equation resembling the Orr-Sommerfeld equation is solved by using a spectral method and an initial-value method (the compound matrix method) for values of the Reynolds number R between 0 and 2000.The eigenvalues are presented for several of interesting cases with different measures of mass flux, These eigenvalues determine the rate of decay for the purturbation.
出处
《应用数学和力学》
CSCD
北大核心
1995年第10期917-926,共10页
Applied Mathematics and Mechanics