摘要
考虑的问题是二维粘性渠流.当雷诺数R→0和R→+∞时,讨论了Poiseuille流在定常的摄动下的上游特征值的渐近性质,结果表明,Wilson(1969)对该问题的下游特征值的分析也适用于上游的分析,且上游特征值的渐近结果与已有的Bramley和Dennis(1982)的数值结果是一致的.
he problem considered is that of two-dimensional viscous flow in a straight channel.Thebehavior of eigenvalues for the stationary perturbation of Poiseuille flow in the upstream for smalland large Reynolds numbers is studied.Results show that the method used by Wilson(1969)forthe downstrem is still valid for the upstream. Furthermore,asympotic results of eigenvalues in theupstream for small and large Reynolds numbers are in agreement with the numerical results ofBramley and Dennis(1982).
出处
《内蒙古大学学报(自然科学版)》
CAS
CSCD
1994年第6期609-613,共5页
Journal of Inner Mongolia University:Natural Science Edition
基金
国家自然科学基金
关键词
特征值
摄动
二维
粘性渠流
渐近分析
Poiseuille flow stationary perturbation upstream eigenvalue