摘要
在S、T都是幺半群且T含有右零元,A是左S-系,B是左T-系,W=S×F(A.T)是由A决定的S和T的圈积的假设下,给出了左W-系AwrB是纯整系的充要条件。利用该结果可得到一种构造纯整系的新方法。
Let S be a monoid and T a monoid with right tzeros,and A, B be left S-and T-acts, respectively. Suppose that W=S×F(A,T)is the wreath product of the monoid S withthe monoicd T by the left S-act A,and that AwrB is the wreath product of the left S-act Aand the eleft T-act B. In this paper orthodox elements in the left W-act AwrB are character-ized as well as global orthodox left W-act AwrB. The result of this paper in particular openup a method to construct many new examples of orthodox acts.
出处
《西北师范大学学报(自然科学版)》
CAS
1995年第3期3-7,共5页
Journal of Northwest Normal University(Natural Science)
基金
甘肃省自然科学基金
关键词
正则对
纯整系
圈积
半群
regular Pair,orthodox act,wreath product