摘要
对KdV方程u_t+uu_z+Eu_(zzz)=0构造了一个二层隐式差分格式,具有三对角线阵,其局部截断误差为O(τ+h+τ/h),其线性化稳定条件为(1+2LQ) ̄2≥1,L=τ/h,数值例子表明,格式长时间稳定,可以描述孤波(Soliton)的性态.
A two -level implicit difference scheme for KdV equation u_i+uu_z+Eu_(zzz)=0 is established. Its local truncation error is O(τ+h+τ/h)and linearization stabiliy condition is(1+2LQ) ̄2≥1(L=τ/h, The scheme corresponds a system of linearequations with tridiagonal matrix ,which can be solved by double sweep method if boundary values aregiven. The numerical example shows that the scheme has long time stability and can be used to describethe behaviour of soliton.
出处
《四川大学学报(自然科学版)》
CAS
CSCD
1995年第6期632-634,共3页
Journal of Sichuan University(Natural Science Edition)
关键词
KDV方程
隐式差分格式
稳定性
孤波
KdV equation,two-level implicit difference scheme ,stability,soliton