摘要
针对Hopfield神经网络在求解巡回推销员问题(TSP)时出现的无效解和局部极小值问题,本文结合网络动态分析,利用权矩阵特征值在网络内部动力特性与外在解表现形式之间的关联作用,通过各特征值间关系协调,对基于原模型的权值修正方案作进一步理论分析与改进,探讨网络收敛于全局有效解的途径,并在全国31省、市、自治区TSP模拟中收到较好效果.
In this paper, we study several models of Hopfield neural network to overcome the difficulties of the invalid solution and local minimum in solving the Travelling Saleman Problem(TSP). Using the analytic methods of neural dynamical property, we discover that the set of the eigenvalues of the network connected matrix is the link between the inner dynamic performance and the outside solution form. The modified strategies of the weight matrix was developed theoretically by coordinating the relationship of eigenvalues. These new models have achieved very satisfactory performance in numerical simulation with 31 Chinese cities.
出处
《上海交通大学学报》
EI
CAS
CSCD
北大核心
1995年第5期144-147,164,共5页
Journal of Shanghai Jiaotong University
基金
国家基础研究攀登计划
国家自然科学基金
国家教委优秀年轻教师基金