摘要
在赋范线性空间中,引进了含参集值向量均衡问题全局有效解和Henig有效解的概念,得到了含参集值向量均衡问题的全局有效解集和Henig有效解集的标量化结果;并在标量化结果的基础上,研究了含参集值向量均衡问题全局有效解映射和Henig有效解映射的下半连续性。
In the normed linear space,it introduces the concept of global efficient solution and Henig efficient solution for the parametric set - valued vector equilibrium problems, and obtains the scalarization results of the global efficient solution and Henig efficient solution for the parametric set -valued vector equilibrium problems. Basing on the scalarization results, it studies the lower semi - continuity of the global efficient solution mapping and Henig efficient solution mapping for the parametric set - valued vector equilibrium problems.
出处
《南昌大学学报(理科版)》
CAS
北大核心
2009年第2期108-112,117,共6页
Journal of Nanchang University(Natural Science)
基金
国家自然科学基金资助项目(10561007)
江西自然科学基金资助项目(01110067)
关键词
含参集值向量均衡问题
全局有效解
HENIG有效解
下半连续
parametric set- valued vector equilibrium problems
Henig efficient solution
global efficient solution
lower semi - continuity