摘要
本文首先在Berres的结果的基础上讨论了可测空间上的gλ测度、信任测度与超可加测度的关系以及gλ测度的无穷级数性质,其次讨论了gλ,测度的概率性质。证明了类似概率论中的Kolmogorov0-1律和Borel0-1律等对gλ独立事件列仍然成立。特别是完成了在λ≠0条件下BorelCantelli引理的证明。
Borel-Cantelli's lemma is obtained by different way when λ≠ 0 and some results with respect to gλ-independent events, such as the analogues of the Borei 0-1 criterion and the Kolmogorov 0-1 law are established. In addition, the relationships between superadditive (subadditive) measures and belief (plausibility) functions are discussed respectively.
出处
《兰州大学学报(自然科学版)》
CAS
CSCD
北大核心
1995年第4期31-37,共7页
Journal of Lanzhou University(Natural Sciences)