摘要
设{X_n,n≥1}i、i、d,X_(n,1)≤X_(n,2)≤…≤X_(n,n)是X_1,X_2,…,X_n的次序统计量。r是固定的非负整数。令是正实数列。本文证明了在一定的条件下 p(Sα(r)>α_(n),i,0)=p(X_(n,n-r)>α_n,i,0)
Let{X_n,n≥1} be i.i. d sequences, X_(n,1)≤X_(n,2)≤X_(n,n) be order statistics of X_1, X_2,…, X_n. Let r be a fixed integer, r≥0, a_n>0 and. In this paper the author proves under certain conditions. P(S_n(r)>α_n, i. 0)=P(X_n, n-r>α_n, i. 0)