期刊文献+

数字乳腺X线照片CAD中可疑密度区域的自动分割(英文) 被引量:4

Segmentation of suspicious densities in digital mammograms' computer-aided detection
下载PDF
导出
摘要 目的提出一种对数字乳腺影像计算机辅助诊断中可疑密度分割更为有效的分割方法。方法使用基础的边缘分割算子sobel和离散形式的动态轮廓模型对乳腺影像中的可疑密度区域(肿块)进行两步法分割,边缘检测进行带阈值选择的轮廓初步提取,然后采用部分边缘点作为动态轮廓模型的计算点,获得能量收敛的最终轮廓。结果实现对数字乳腺影像库和乳腺体模影像的分割,并对分割轮廓进行与人工分割轮廓的重叠率计算和ROC曲线计算,对算法进行评价。结论最终分割结果有效降低假阳性概率,提高了分割的特异性。 Objective: To develop and evaluate a more effective segmentation algorithm in computer-aided detection on masses of mammograms. Methods: In this work, a two-stage mass segmentation method was used in pixel-level segmentation and region-level segmentation which was sensitive in detection the suspicious densities (mass) in digital mammograms. Results: The method was used to segment a consecutive set of 62 digital mammograms taken from the Visible Human Data (VHD) and rnammogram phantom' s image. Evaluation of the performance of the method was done in two different ways. In the first experiment, the segmentations of masses were compared with annotations made by the radiologists. In the second experiment, the ROC curves were calculated to examine the segmentation results. Conclusion: The performance of two-stage mass segmentation can reject false-positive regions, and thus the specificity increases while high sensitivity is maintained, and the suspicious areas can be segmented more closely.
出处 《泰山医学院学报》 CAS 2005年第2期136-139,共4页 Journal of Taishan Medical College
关键词 数字乳腺影像 计算机辅助诊断 分割 假阳性 digital mammography computer-aided detection (CAD) segmentation false positive reduction
  • 相关文献

参考文献9

  • 1李月卿主编..医学影像成像理论[M].北京:人民卫生出版社,2003:477.
  • 2Kenneth R. Castleman, Prentice-Hall International, Inc[M]. Digital Image Processing, 2001. 被引量:1
  • 3Guido M. Segmentation of suspicious densities in digital mammograms, Med[J]. Phys,2001,28(2):259-266. 被引量:1
  • 4Yuan-hsiang Chang. Knowledge-based computer-aid detection of masses on digitized mammograms: a preliminary assessment, Med[J]. Phys, 2001,28(4):455-461. 被引量:1
  • 5Georgia D. tourassi, Application of the mutual information criteron for feature selection in computer-aid diagnosis, Med[J]. Phys, 2001,28(12):2349-2402. 被引量:1
  • 6马然,张兆扬,安平.基于活动轮廓模型的DP修正算法[J].上海大学学报(自然科学版),1999,5(5):437-440. 被引量:1
  • 7Lefebvre F, Berger G, Laugier P. Automatic detection of the boundary of the calcaneus from ultrasound parametric images using an active contour model[J]. clinical assessment, IEEE Trans Medical Imaging, 1998, 17(1):45-52. 被引量:1
  • 8李祥林.[D].泰安:泰山医学院,2005. 被引量:1
  • 9Zhong Xue, AI-Snake: an affine-inwariant deformable contour model for object matching[J]. Image and vision computing, 2002,20(8),77-84. 被引量:1

同被引文献26

  • 1张治国,周越,谢凯.一种基于Mum ford-Shah模型的脑肿瘤水平集分割算法[J].上海交通大学学报,2005,39(12):1955-1958. 被引量:10
  • 2邱建峰,王鹏程,鲁雯,刘玉,林海洋.核磁共振实验设计探讨[J].中国医学装备,2005,2(12):30-32. 被引量:16
  • 3欧阳成,丁辉,王广志.乳腺X线图像肿块分割[J].北京生物医学工程,2007,26(3):237-240. 被引量:8
  • 4[2]李月卿等.医学影像成像原理.北京:人民卫生出版社,2003 被引量:1
  • 5李月卿.医学影像成像原理.北京:人民卫生出版社,2003 被引量:2
  • 6Michael A W . Segmentation of the breast region in m_amrno- grams using snakes [ A ]. Alexei S. Canadian Conference on Computer and Robot Vision[ C]. Canada: IEEE Computer Soci- eW, 2004.385 - 392. 被引量:1
  • 7Yu Hong-wei. Xu Wei-dong,Liu Wei, et al. Gaussian pyramid based multi-scale GVF for mass segmentation in digitized mammograms[A]. 2009 3rd International Conference on Bioin- formatics and Biomedical Engineering[ C]. Beijing: 1EEE Com- puter Society,2009.1 - 4. 被引量:1
  • 8J E Ball. Three stage level set segmentation of mass core, pe- riphery, and spiculations for automated image analysis of digital mammograms[ D ]. Starkville: Mississppi State Univ, 2007: 55 -80. 被引量:1
  • 9Chan H P. Computer-aided breast cancer diagnosis[ A]. Perlrick N , Sahiner B. In Artifical Intelligence Techniques in Breast Cancer Diagnosis and Prognosis[ C]. Nanjing: World Scientific Press. 2002:179 - 264. 被引量:1
  • 10Sahiner B , Chan H P , Petfick N , et al. Improvement of mam- mographic mass characterization usingspiculation measures and morphological features[ J] .Medical Physics, 2001,28(7) : 1455 - 1465. 被引量:1

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部