摘要
The cracking behaviour of X-70 pipeline steel in near-neutral pH solutions was studied under different modes of cyclic loading. The crack propagation process of X-70 pipeline steel under low frequency cyclic loading condition was controlled mainly by stress corrosion cracking (SCC) mechanism. Under mixed-mode cyclic loading, both higher tensile stress and shear stress made cracks easier to propagate. Applied cathodic potentials and high content of carbon dioxide in solutions also promoted the propagation of cracks. The propagation directions of cracks were different under different cyclic loading conditions. Under mode I (pure tensile stress) cyclic loading condition, cracks were straight and perpendicular to the tensile stress axis, while under mixed-mode 1/111 (tensile/shear stress) cyclic loading,cracks were sinuous and did not propagate in the direction perpendicular to the main tensile stress axis. Under the mixed-mode cyclic loading, cracks were much easier to propagate, suggesting that shear stress intensified the role of tensile stress. In addition, shear stress promoted the interaction between cracks, resulting in easier coalescence of cracks.
The cracking behaviour of X-70 pipeline steel in near-neutral pH solutions was studied under different modes of cyclic loading. The crack propagation process of X-70 pipeline steel under low frequency cyclic loading condition was controlled mainly by stress corrosion cracking (SCC) mechanism. Under mixed-mode cyclic loading, both higher tensile stress and shear stress made cracks easier to propagate. Applied cathodic potentials and high content of carbon dioxide in solutions also promoted the propagation of cracks. The propagation directions of cracks were different under different cyclic loading conditions. Under mode I (pure tensile stress) cyclic loading condition, cracks were straight and perpendicular to the tensile stress axis, while under mixed-mode 1/111 (tensile/shear stress) cyclic loading,cracks were sinuous and did not propagate in the direction perpendicular to the main tensile stress axis. Under the mixed-mode cyclic loading, cracks were much easier to propagate, suggesting that shear stress intensified the role of tensile stress. In addition, shear stress promoted the interaction between cracks, resulting in easier coalescence of cracks.
基金
This work was supported by the Special Funds for the Major State Basic Research Projects in China(No.G19990650)
also supported by the Science and Technology Comm is—sion of Shanghai Municipality(Projects Nos.025258036 and 02ZE14031