摘要
研究离散微分代数系统的解的有界性,得出若一个具有周期性质的离散微分代数系统的解是最终有界的,则必存在周期解.利用广义Lyapunov函数研究一类离散微分代数大系统,给出了其存在周期解的充分条件.
From the study on the boundary of solution to discrete differential-algebraic systems,it is concluded that if the solution to discrete differential-algebraic system periodically is ultimately bounded,there must be a periodic solution to the system.When Lyapunov function is employed to study a class of discrete differential-algebraic system, the sufficient condition is found in the periodic solution to the discrete differential-algebraic system provided.
出处
《桂林工学院学报》
CAS
北大核心
2005年第2期259-262,共4页
Journal of Guilin University of Technology
基金
国家自然科学基金资助项目(60064002)
教育部留学回国人员科研启动基金资助项目(教外司留[2004]527)
广西自然科学基金资助项目(桂科自0448001)
关键词
微分代数系统
周期解
有界性
discrete differential-algebraic systems
periodic solution
boundary