期刊文献+

时滞差分系统基于两种测度的有界性

BOUNDEDNESS IN TERMS OF TWO MEASURES FOR DELAY DIFFERENCE SYSTEMS
下载PDF
导出
摘要 本文利用勒茹米辛型条件和向后差分算子获得一些定理可以确保时滞差分系统为(h_0,h)一致有界(一致有界且最终有界,一致有界且一致最终有界)。在所得到的定理中,对△V的限制较弱,便于应用。 In this paper, the authors establish several theorems, in terms of Razumikhin-type conditions and the backward difference operators, which can ascertain that the delay difference systems are (h0,h) uniformly bounded (uniformly bounded and ultimately bounded, uniformly bounded and uniformly ultimately bounded). In the obtained theorems, ΔV is required to be less restrictive, which is more convenient to use.
出处 《数学年刊(A辑)》 CSCD 北大核心 2003年第5期639-646,共8页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.19831030)
关键词 时滞差分系统 (h0 h)一致有界 (h0 h)最终有界 (ho h)一致最终有界 LIAPUNOV函数 勒茹米辛型条件 Delay difference systems, (h0,h) uniform boundedness, (h0,h) ultimate boundedness, (h0, h) uniform ultimate boundedness, Liapunov functions, Razumikhin-type conditions
  • 相关文献

参考文献2

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部