摘要
研究一类基于Delta算子描述的T-S模糊模型状态反馈镇定设计问题。首先将全局模糊模型按隶属函数划分成若干子空间,并被表示成不确定系统的形式;采用分段Lyapunov函数法,得到鲁棒稳定化控制律存在的充分条件,该条件被进一步等价表示成一组线性矩阵不等式的可解性问题。克服了以往设计法中需要求解一公共正定矩阵P的不足,也无需求解繁琐的Riccati方程。所得结果可将连续和离散模糊系统的有关结论统一到Delta算子框架内。
<Abstrcat> Robust state-feedback stabilization of a class of delta operator formulated systems in T-S (fuzzy) framework is studied. The global fuzzy model has been newly divided into some subspace by (membership.) Using subsection Lyapunov function method, sufficient conditions for the stability of (closed-loop) fuzzy system and the existence of such controller are derived and shown to be equivalent to the solvability of a certain linear matrix inequality (LMI) system. Furthermore, a parameterized (representation) of a set of desired of controllers is characterized in terms of the feasible solutions to the LMIs. The proposed results not only can bring previous related conclusions of continuous-time and (discrete-time) T-S fuzzy systems into the unified delta framework, but also can overcome the defect of solving a common positive matrix P and the trouble in solving Riccati equation.
出处
《模糊系统与数学》
CSCD
北大核心
2005年第2期140-145,共6页
Fuzzy Systems and Mathematics
基金
国家自然科学基金重点资助项目(69934010)
安徽省教育厅青年教师科研资助项目(2004jq142)