摘要
利用多年水稻(早稻和晚稻)区域试验产量结果和有关试验点气象资料,分析了基因型×环境互作效应年度间变化趋势、各试点平均产量与主要气象因子的关系、产量影响因子的主成分等,并用逐步回归分析法建立了水稻产量回归模型。研究结果表明:水稻基因型×环境互作效应值在年度间相对稳定(早稻为0 35,晚稻为0 20)。试验点平均产量与气象因子的相关性分析结果表明,产量与水稻生长季节(3~10月)的总辐射和总积温有较大的相关性(相关系数为0 8056),而与总雨量呈较大的负相关(相关系数为-0 3423)。影响产量的主成分因子分别是热量、粒重、生育期和粒数,利用逐步回归分析法建立的产量回归方程,相关系数(R)达0 99983。
<Abstrcat> Data were analyzed from rice(Oryza sativa L.)multi-environment trail and weather material test sites in Fujian province, China. The results indicated that the structure of GEI in rice trails was stable in general. There was a positive correlation between climate factor(light radiation and temperature summation)and mean yield of the test site, but there was an inverse relationship between rainfall and the mean yield. The influencing factors of rice yield were studied by principal component analysis, and the main factors influencing yield were heat, kernel weight, growth duration and kernel numbers. With stepwise regression analysis, a function was derived and the coefficient of determination (R) reached (0.999 83).
出处
《吉林农业大学学报》
CAS
CSCD
北大核心
2005年第2期131-136,共6页
Journal of Jilin Agricultural University
基金
福建省教育厅资助项目(JA00186)
福建农林大学青年教师基金项目(200201A01)
关键词
水稻
产量
气象因子
主成分分析
回归分析
rice
yield
climate factor
principle component analysis
regression analysis