摘要
在模糊线性规划理论的基础上,对同时含有等式约束和不等式约束的多目标全系数模糊线性规划的最优解进行研究。首先定义了目标协调度的概念,然后以目标协调度最大化为最优性条件,提出多目标全系数模糊线性规划的模糊最优解的定义,最后给出一种可行的求解方法。
The optimal solution of multi-objective all-coefficient-fuzzy linear programming (noted as MACFLP) with equality and inequality constraints is discussed by utilizing the theory of fuzzy linear programming. First the degree of objective concordance is defined, then the fuzzy optimal solution of MACFLP is given by the optimal condition-maximization of the degree of objective concordance. A useful method is presented to solve MACFLP.
出处
《工程数学学报》
CSCD
北大核心
2005年第3期525-530,共6页
Chinese Journal of Engineering Mathematics
基金
国家自然科学基金重点科研课题(70031010).
关键词
多目标
全系数模糊线性规划
目标协调度
模糊最优解
multi-objective
all-coefficient-fuzzy linear programming
degree of objective concordance
fuzzy optimal solution