摘要
利用群论的方法研究系统的对称性,可以将对称系统分解为一系列互相独立的子系统,使系统的H2和H∞控制可以在低维子系统上设计实现,从而减少控制系统设计中的计算量,这一点对于大规模系统的控制尤其重要.简要介绍了利用系统对称性简化Lyapunov方程和Riccati方程的求解,以及计算控制系统的范数等几个例题,这些都是H2和H∞控制中常见的计算问题.
Symmetric systems can be transformed into uncoupled subsystems by using the group representation theory, which can reduce the computational effort required for H_2 and H_∞ control of the systems, especially for large scale systems whose controllers are synthesized directly for subsystems with lower dimensions. This paper presented several computational problems in H_2 and H_∞ controllers design to demonstrate the point that the use of symmetry can decrease the computational requirements, e.g. computation of control systems norm and solutions of Lyapunov equations and Riccati equations.
出处
《动力学与控制学报》
2005年第2期17-21,共5页
Journal of Dynamics and Control
基金
国家自然科学基金资助项目(10202004)~~