摘要
目的在股骨头坏死和骨质疏松股骨颈骨折的研究中,股骨头松质骨的空间结构的重要性越来越受到重视。本研究介绍一种对股骨头松质骨样本的骨小梁的空间结构进行三维重建和评价的方法。方法对8个犬股骨头的松质骨样本进行硝酸银染色和白色聚酯包埋后,逐层连续断面切除,利用数码CCD镜头连续采集断面图像,获取样本断面的二维图像,利用计算机软件二值化图像,并进行三维重建,得到松质骨小梁空间结构的计算机三维图形,对样本进行三维评测,指标包括骨体积分数(BoneVolumeFraction,BVF,BV/TV)、骨表面积体积比(Bonesurface/bonevolumeratio,BS/BV)、骨小梁厚度(Trabecularthickness,Tb.Th)、骨小梁数目(Trabecularnumber,Tb.N)、骨小梁间隙(Trabecularspacing,Tb.Sp)、结构模型指数(StructureModelIndex,SMI)。结果用本方法可以获得了清晰的骨小梁三维结构图,图像空间解析度10μm×10μm×10μm。分析结果表明,样本的上半部分与下半部分相比,骨小梁的BV/TV、BS/BV、Tb.Th、Tb.N和Tb.Sp、SMI之间存在差异(P<0.05),样本的上半部分结构致密,BV/TV较大,而Tb.Sp较小(P<0.05),小梁结构也表现为板状模型。结论距离股骨头上关节面的深度不同,股骨头的空间指标也随之出现不同的变化。
Objective:To introduce a new method to reconstruct and evaluate trabecular bone specimen of femoral head.Method:After stained black by nitrate sliver and embeddedby white polyester,the trabecular bone specimen of eight dogs femoral head were serially removed by thin layers,and each exposed cross section was imaged by a digital camera.According to these two-dimensional images,the three-dimensional figures of trabecular structure were reconstructed by computer.And then,the structure of these figures were evaluated by three-dimensional parameters.These parameters included Bone Volume Fraction(BVF,BV/TV),Bone surface/bone volume(BS/BV)ratio,Trabecular thickness(Tb.Th),Trabecular number(Tb.N),Trabecular spacing(Tb.Sp)and Structure Model Index(SMI).Result:The authors obtained clear three-dimensional model of trabecular specimen.There was significant difference between the lower and upper part of the specimens in BV/TV,BS/BV,Tb.Th,Tb.N,Tb.Sp and SMI(P<0.05).The upper part of the specimen had higher value in BV/TV and lower value in Tb.Sp.The parameter SMI of this part represented the plate-model characteristic of trabecular structure.Conclusion:The three-dimensional parameters are different with the depth below the top articular surface of the femoral head.
出处
《中国矫形外科杂志》
CAS
CSCD
北大核心
2005年第12期924-926,共3页
Orthopedic Journal of China
基金
国家自然科学基金重点项目(No.30330570)
关键词
骨小梁
空间结构
三维
动物
Trabecular
Space structure
Three-dimensional
Animal$$$$