期刊文献+

空间模型对单次运动相关脑电的分析

Single Trial Movement-Related EEG Analysis with Spatial Patterns
下载PDF
导出
摘要 本研究提出一种从单次试验的多导EEG信号中提取运动相关去同步化和同步化电位特征的空间模型 ,区分左右手想象运动 ,作为一种新的通讯手段对外界设备进行控制。此模型根据各电极对分类的重要性自动获得其权值 ,并将EEG信号沿最适合分类的几个方向投影 ,沿投影方向计算一连续时间段内的方差 ,作为线性分类器的特征输入。对 8名被试者左右手想象运动时 5 9导EEG进行分类 ,正确率均在 70 %以上 ,与用多通道AR模型提取特征、神经网络做分类器的方法相比 ,效果好、速度快。 The paper proposed spatial patterns with which to extract event-related desynchronization/synchronization (ERD/ERS) potential form single trial multi-channel EEG and discriminate imagination of left and right hand movements. The spatial patterns were expected to be used as a new communication method for the disabled to control outside devices. It obtained an automatic weighting of electrodes according to their importance for the classification task. It projected EEGs onto the most discriminatory characteristic patterns and calculated the variances of a consecutive time period resulting from each projection, which were used as input features to a linear classifier. The classification correctness for eight subjects were more than 70%, which was better and faster than that with multi-autoregressive (AR) model and artifical neural networks (ANNs).
出处 《中国生物医学工程学报》 EI CAS CSCD 北大核心 2005年第1期85-88,共4页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金资助项目 (60 3 75 0 17)。
关键词 事件相关去同步化和同步化 空间模型 空间协方差阵 脑电分类 Automation Biological organs Electrodes Handicapped persons Neural networks Pattern recognition Synchronization
  • 相关文献

参考文献12

  • 1杨福生, 高上凯..生物医学信号处理[M],1989.
  • 2庄平.脑电事件相关去同步化和同步化活动与运动相关性作业[J].中国临床康复,2004,8(1):152-154. 被引量:25
  • 3Pfurtschener G, Neuper C, Guger C, et al. Current trends in Graz brain 2computer interface (BCI) research [ J ]. IEEE Trans Rehab Eng,2000,8(2) :216 - 219. 被引量:1
  • 4Wolpaw JR, McFarland DJ, Vaughan TM. Brain-Computer Interface Research at the Wadsworth Center [ J ]. IEEE Trans Rehab Eng,2000,8(2) :222 - 226. 被引量:1
  • 5Gert Pfurtscheller, Christa Neuper, Motor imagery activates primary sensorimotor area in humans [ J ]. Neuroscience Letters, 1997,239 : 65- 68. 被引量:1
  • 6Pregenzer M, Pfurtschener G, Flotzinger D. Automated feature selection with a distinction sensitive learning vector quantizer [ J ]Neurocomputing, 1996,11 : 19 - 29. 被引量:1
  • 7Peter BO, Pfurtscheller G, Flyvbjerg. Automatic Differentiation of Multichannel EEG Signals [ J ]. IEEE Trans Rehab Eng, 2001,48(1):111-116. 被引量:1
  • 8Johannes Milner-Gerking, Pfurtacheller G, Henrik Flyvbjerg.Designing optimal spatial filters for single-trial EEG classification in a movement task [ J ]. Clinical Neurophysiology, 1999, 110 : 787 -798. 被引量:1
  • 9Herbert Ramoser, Johannes Mttller-Gerking, G. Pfurtscheller,Optimal Spatial Filtering of Single Trial EEG During Imagined Hand Movement[J] .IEEE Trans Rehab Eng,2000,8(4) :441 -446. 被引量:1
  • 10Guger C, Rammer H, Pfurtschener G, Real-Time EEG Analysis with Subject-Specific Spatial Patterns for Brain-Computer Interface(BCI)[J] .IEEE Trans Rehab Eng,2000,8(4) :447 -456. 被引量:1

二级参考文献3

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部