期刊文献+

自适应单次运动想像最优特征提取研究

Adaptive features extraction method for motor imagery
下载PDF
导出
摘要 为得到区分左右手运动想像脑电信号的最优特征,提出了一种自适应单次脑电特征提取方法.该算法先按运动想像电位生理学原理对不同被试寻找事件相关去同步/同步(ERD/ERS)现象最明显的频段与时间段,再按照这些参数提取C3,C4导脑电信号的能量,最后取其能量比值作为左右手想像分类的特征.采用公共标准数据集做测试,运用支持向量机(SVM)进行分类,并与AR特征提取法对照.结果表明,该法可有效提高分类正确率(平均90.7%,最佳98.7%),优于使用固定频段与时间段的AR特征提取法(平均77.4%,最佳92.8%),且算法复杂度低于AR特征提取法,适应性稍强于AR特征提取法,适合在线应用. A features extraction method is proposed to find the optimum features of hand motor imagery(MI).First,the subject-specific discriminative frequency and the time range that show the most dominant event related desynchronization/synchronization(ERD/ERS) phenomenon is selected.Then according to these information,the energy of EEG signal(C3,C4) is extracted.Finally,the ratio of the C3 energy to the C4 energy is adopted as the optimum feature.For test purpose,features are extracted from the standard date set and support vector machine(SVM) is used as the classifier.The proposed method can improved the classification accuracy(the average is 90.7%,the optimum is 98.7%),which is better than the existing autoregression model(AR) method(the average is 77.4%,the optimum is 92.8%),and it is suitable for the online analysis.
作者 邓茜 王行愚
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第S1期219-223,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(60513005 60674089) 上海市重点学科建设资助项目(B504)
关键词 运动想像 事件相关去同步/同步 特征提取 自回归模型 motor imagery event related desynchronization/synchronization feature extraction autoregression model
  • 相关文献

参考文献10

  • 1金晶,王行愚,张秀.基于能量特征的左右手运动想象脑信号的识别方法[J].华东理工大学学报(自然科学版),2007,33(4):536-540. 被引量:5
  • 2陈强,彭虎,冯焕清,江朝晖.独立式脑-计算机接口信号处理和识别方法研究[J].北京生物医学工程,2005,24(4):254-257. 被引量:1
  • 3庄平.脑电事件相关去同步化和同步化活动与运动相关性作业[J].中国临床康复,2004,8(1):152-154. 被引量:25
  • 4Guest Editoria1.Brain-computer interface technology:a review of the second international meeting. IEEE Trans RehabEng . 2003 被引量:1
  • 5Herman Pawel,Prasad Girijesh,Martin Thomas,et a1.Comparative analysis of spectral approaches to feature extraction foreeg-based motor imagery classification. IEEE Transactions on Neural Systems and Rehabilitation Engineering . 2008 被引量:1
  • 6Thomas Kavitha P,Cuntai Guan,Tong Lau Chiew,et al.An adaptive filter bank for motor imagery based brain computerinterface. Proceedings of the30th Annual International Conference of the IEEE Engineering in Medicine and BiologySociety . 2008 被引量:1
  • 7Leeb R,Lee F,Keinrath C,et al.Brain-computer communication:motivation,aim,and impact of exploring a virtualapartment. IEEE Transactions on Neural Systems and Rehabilitation Engineering . 2007 被引量:1
  • 8Lou Bin,Hong Bo,Gao Shangkai.Task-irrelevant alpha component analysis in motor imagery based brain computerinterface. Proceedings of the30th Annual International Conference of the IEEE Engineering in Medicine and BiologySociety . 2008 被引量:1
  • 9Matsunaga Takahiro,Katayama Yoshinori,Hayami Takehito,et al.Measurements of the mu/beta ERD and gamma ERS dur-ing the imagination of body parts movement. Proceedings of the30th Annual International Conference of the IEEE En-gineering in Medicine and Biology Society . 2008 被引量:1
  • 10Wolpaw,J. R.,Birbaumer,N.,McFarland,D. J.,Pfurtscheller,G.,Vaughan,T. M.Brain-computer interfaces for communication and control. Clinical Neurophysiology . 2002 被引量:1

二级参考文献20

  • 1谢丹,江朝晖,冯焕清,陈强.基于LVQ和脑电信号的左右手动识别[J].北京生物医学工程,2004,23(4):269-271. 被引量:2
  • 2张爱华,赵予晗.脑电信号相同步分析在识别左右手想象运动中的作用[J].中国临床康复,2005,9(48):4-6. 被引量:14
  • 3Guest Editorial. Brain-computer interface technology: a review of the second international meeting. IEEE Trans Rehab Eng, 2003, 11(2): 94- 109. 被引量:1
  • 4.[EB/OL].http://ida. first, fraunhofer, de/- blanker/eompetifion/.,. 被引量:1
  • 5Pfurtschener G, Lopes da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clinical Neurophysiology, 1999, 110: 1842- 1857. 被引量:1
  • 6Peters BO, Pfurtschener G, Flyvbjerg H. Automatic differentiation of multicharmel EEG signals. IEEE Trans BME, 2001, 48 ( 1 ) :111 - 116. 被引量:1
  • 7McFarland DJ, McCane [aM, David SV, et al, Spatial filter selection for EEG-based communication. Electroencephalography and Clinical Neurophysiology, 1997, 103 (3) : 386 - 394. 被引量:1
  • 8Ramoser H, Muller-Gerking J, Pfurtschener G. Optimal spatial filtering of single trial EEG during imagined hand movement, IEEE Trans Rehab Eng, 2000, 8 (4) : 441 - 446. 被引量:1
  • 9Muler KR, Anderson CW, Birch GE, Linear and nonlinear methods for brain-computer interfaces. IEEE Trans Rehab Eng,2003, 11 (2): 165-169. 被引量:1
  • 10Wolpaw J R,Birbaumer N,McFarland D J,et al.Brain computer interfaces for communication and control[J].Clinical Neurophysiol,2002,113(6):767-791. 被引量:1

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部