期刊文献+

基于RBF网络的电力市场清算电价预测 被引量:4

The Power Market Clearing Price Forecasting Based on RBF Network
下载PDF
导出
摘要 采用RBF网络模型对电力市场中的清算电价进行预测,聚类算法采用改进的模糊C均值聚类,减小了野值对输出结果的影响,隐层的输出采用聚类结果的隶属度函数,省掉了对径向基函数宽度的计算。通过美国加州电力市场公布的历史数据对该模型进行验证,结果表明该模型应用于电价预测具有较高的预测精度,并且具有训练速度快、不存在局部极小和过拟合等优点。 It presents the method of Power Market Clearing Price(MCP) forecasting based on Radial Basis Function (RBF) network with improved fuzzy C means clustering. The advantages of this method over BP network method are: higher precision and faste r training speed, free of local optimality and over fitting. A example on Califo rnia PX history data shows that the method is applicable.
出处 《中国制造业信息化(学术版)》 2005年第5期138-140,共3页
关键词 电力市场 RBF网络 电价预测 清算 模糊C均值聚类 隶属度函数 径向基函数 网络模型 聚类算法 输出结果 聚类结果 历史数据 美国加州 预测精度 模型应用 训练速度 局部极小 过拟合 Electricity Market MCP Forecasting RBF Network FCM Clustering Analysis of Program Statement for NC Machine Tool XIE Ming (Shaoyang Institue, Hunan Shaoyang, 422000, China)
  • 相关文献

参考文献5

二级参考文献24

  • 1[4]Conejo A J, Galiana F D, Kockar Ivana. Z-bus Loss Allocation. IEEE Trans on Power Systems, 2001, 16(1): 105~110 被引量:1
  • 2[5]Rau N S. Transmission Loss and Congestion Cost Allocation--An Approach Based on Responsibility. IEEE Trans on Power Systems, 2000, 15(4): 1401~1409 被引量:1
  • 3[6]Alberto Berizzi, Cristian Bovo, Paolo Marannino. Allocation of Transmission Losses in Presence of Both Bilateral and Pool Market Models. In: Proceedings of 22nd IEEE Power Engineering Society International Conference on Power Industry Computer Applications. Sydney(Australia): 2001. 336~341 被引量:1
  • 4[7]Galiana F D, Conejo A J, Kockar Ivana. Incremental Transmission Loss Allocation Under Pool Dispatch. IEEE Trans on Power Systems, 2002, 17(1): 26~33 被引量:1
  • 5[8]Tan X, Lie T T. Application of the Shapley Value on Transmission Cost Allocation in the Competitive Power Market Environment. IEE Proceedings--Gener, Transm & Distrib, 2002, 149(1): 15~20 被引量:1
  • 6Siddiqi R,Kader Ab.POWERCOACH--An Electricity Trading Advisor. IEEE Computer Applications in Power, 1994, 7(3): 41~46 被引量:1
  • 7Wang A, Ramsay B. Prediction of System Marginal Price in the UK Power Pool Using Neural Networks.In: International Conference on Neural Networks. Houston(USA): 1997. 2116~2120 被引量:1
  • 8Szkuta B R, Sanabria L A, Dillion T S. Electricity Price Short-term Forecasting Using Artificial Neutral Networks. IEEE Trans on Power Systems, 1999, 14(3): 2116~2120 被引量:1
  • 9Leao de M T P, Saraiva J T A. Simulated Annealing Approach to Evaluate Long Term Marginal Costs and Investment Decisions. In: IEEE Power Engineering Society Summer Meeting. Alberta(Canada): 2000. 2284~2289 被引量:1
  • 10Kim K H, Park J K, Hwang K J, et al. Implementation of Hybrid Short-term Load Forecasting System Using Artificial Neural Networks and Fuzzy Expert Systems. IEEE Trans on Power Systems, 1995, 10(3): 1534~1539 被引量:1

共引文献125

同被引文献60

引证文献4

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部