期刊文献+

Molecular Imprinted Membrane with High Flux by Surface Photo-grafting Copolymerization 被引量:2

Molecular Imprinted Membrane with High Flux by Surface Photo-grafting Copolymerization
下载PDF
导出
摘要 Molecular imprinted polymer membranes (MIM) combine the merits of molecular imprint and membrane technology. In this work, a very thin of imprinted polymer that can specifically and selectively absorb the basic template (adenine) was grafted on the surface of polyvinylidene fluoride membrane by photo-grafting copolymerization. Because the molecular imprinted polymer is grafted on the surface of the matrix membrane without blocking the membrane pores, the resultant MIMs have high flux as microfiltration membrane (0.26 mol·m^-2·h^-1 of template and flux for distilled water was 3.6 ml·mim^-1·cm^-2 at 0.8 MPa). Moreover, the MIMs can absorb/desorb template molecules rapidly. Usually, it only takes several minutes for MIMs to absorb more than 75% of the template (adenine) in aqueous solution. And the influences of the type and amount of the functional monomers, the amount of the cross-linker on the absorption capability are discussed to determine the optimal preparation conditions。 Molecular imprinted polymer membranes (MIM) combine the merits of molecular imprint and membrane technology. In this work, a very thin of imprinted polymer that can specifically and selectively absorb the basic template (adenine) was grafted on the surface of polyvinylidene fluoride membrane by photo-grafting copolymerization. Because the molecular imprinted polymer is grafted on the surface of the matrix membrane without blocking the membrane pores, the resultant MIMs have high flux as microfiltration membrane (0.26mol·m-2·h-1 of template and flux for distilled water was 3.6ml·mim-1·cm-2 at 0.8 MPa). Moreover, the MIMs can absorb/desorb template molecules rapidly. Usually, it only takes several minutes for MIMs to absorb more than 75% of the template (adenine) in aqueous solution. And the influences of the type and amount of the functional monomers, the amount of the cross-linker on the absorption capability are discussed to determine the optimal preparation conditions.
出处 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2005年第2期184-190,共7页 中国化学工程学报(英文版)
关键词 molecular imprinted membrane photo-grafting copolymerization ADENINE 分子 聚合物 薄膜技术 MIMs 共聚合反应 亚乙烯基氟化物
  • 相关文献

参考文献1

二级参考文献3

共引文献1

同被引文献45

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部