期刊文献+

基于连续高斯密度混合HMM的滚动轴承故障诊断研究 被引量:5

Continuous Gaussian Mixture HMM-based Diagnosing Method of Roller Bearing
下载PDF
导出
摘要 滚动轴承在直升机的传动系统中占有十分重要的地位,对其进行快速有效的状态监测与故障诊断具有重大意义。由故障诊断和隐马尔可夫模型(HiddenMarkovModel,HMM)本质上的相通性,利用连续高斯密度混合隐马尔可夫模型分析滚动轴承的振动信号,先以基于短时傅里叶变换的倒谱系数为特征训练模型,再利用模型进行状态监测和故障诊断,实验结果表明该方法能利用少量样本进行训练和有效诊断,且具有训练时间短、诊断速度快的优点。 The roller bearings are very important to the gearing system of a helicopter, so it's necessary to monitor and diagnose their conditions and faults. Because condition monitoring and fault diagnosis are similar to Hidden Markov Model(HMM) in nature, four-state continuous Gaussian mixture HMM(Hidden Markov Model) is adopted to monitor and diagnose the roller bearings conditions and faults, which is trained through the features of Cepstrum Coefficient based on Short time Fourier transform extracted from vibration signals. The result shows that this proposal method can be used to diagnose rapidly with high correctness through small training samples.
出处 《机械传动》 CSCD 北大核心 2005年第1期7-10,共4页 Journal of Mechanical Transmission
基金 十五国防预研项目资助(41319040202)
  • 相关文献

参考文献7

  • 1谢锦辉著..隐Markov模型 HMM 及其在语音处理中的应用[M].武汉:华中理工大学出版社,1995:154.
  • 2L. Atlas, M. Ostendorf, G.D. Bernard. Hidden Markov Models for Monitoting Machining Tool- Wear. IEEE International Conference on Acoustics,Speech, and Signal Processing, Vol. 6, 2000:3887 ~ 3890. 被引量:1
  • 3L.P. Heck, J.H. McClellan. Mechanical System Monitoring using HMMs.IEEE International Conference on Acoustics, Speech, and Signal Processing Vol .3, 1991:1697 ~ 1700. 被引量:1
  • 4J. Ying, T. Kirubarajan, K.R. Pattipati. A hidden Markov model - based algorithm for online fault diagnosis with partial and imperfect tests, IEEE Midnight - Sun Workshop on Soft Computing Methods in Industrial Applications,SMCia/99, 1999:103 ~ 108. 被引量:1
  • 5Hasan OCAK, Kenneth A. LOPARO. A New Bearing Fault Detection and Diagnosis Scheme Based on Hidden Markov Modeling of Vibration Signals,IEEE International Conference on Acoustics, Speech, and Signal Processing,Vol. 5 , 2001:3141 ~3144. 被引量:1
  • 6E. Hatzipuntelis, A. Murray, J. Penman . Comparing hidden Markov models with artificial neural network architectures for condition monitoring applications, Fourth International Conference on Artificial Neural Networks, Jun 1995:369~374. 被引量:1
  • 7Lawrance R. Rabiner. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition, Proceedings of the IEEE, Vol. 77, No.2, Febmary 1989. 被引量:1

同被引文献48

引证文献5

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部