期刊文献+

非齐次A-调和方程障碍问题解的局部正则性

Local Regularity for Solutions of Obstacle Problems of Nonhomogeneous A-Harmonic Equation
下载PDF
导出
摘要 在障碍函数非负的情况下,得到了非齐次A_调和方程divA(x, u(x))=divF(x).障碍问题解的局部正则性结果,即设障碍函数ψ∈W1,sloc(Ω),1<p<s<n,则其Kψ,θ障碍问题的解u∈Ls (Ω).这里s 满足1s =1s-1n. The local regularity result for solutions of obstacle problems of nonlinear A_harmonic equationdivA(x,u(x))=divF(x)is obtained.That is,suppose the obstacle functionψ∈W^(1,s)_(loc)(Ω),1<p<s<n.then the solution to the K_(ψ,θ^-)obstacle problem u∈L^(s^*)(Ω).
出处 《河北大学学报(自然科学版)》 CAS 北大核心 2005年第2期140-143,共4页 Journal of Hebei University(Natural Science Edition)
基金 国家自然科学数学天元青年基金资助项目(A0324610)
关键词 障碍问题 非齐次A-调和方程 局部正则性 obstacle problem nonlinear A_harmonic equation local regularity
  • 相关文献

参考文献1

二级参考文献6

  • 1Li Gongbao, Martio O. Local and global integrability of gradients in obstacle problems. Ann Acad Sci Fenn Ser A I Math, 1994, 19:25-34. 被引量:1
  • 2Giachetti D, Porzio M M. Local regularity results for minima of functionals of the calculus of variation.Nonlinear Analysis, T M A, 2000, 39:463-482. 被引量:1
  • 3Giaquinta M. Multiple integrals in the calculus of variations and nonlinear elliptic systems. Princeton,N J: Princeton University Press, 1983. 被引量:1
  • 4Gilbarg D, 2Yudinger N S. Eliptic partial differential equations of second order. Grundlehren der mathemaischen Wissenschaften 224. 2nd Edition. Springer-Verlag, 1983. 被引量:1
  • 5Meyers N G, Elcrat A. Some results on regularity for solutions of nonlinear elliptic sustems and quasiregular functions. Duke Math J, 1975, 42:121-136. 被引量:1
  • 6Li Gongbao, Martio O. Stability in obstacle problems. Math Scand, 1994, 75:87-100. 被引量:1

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部