期刊文献+

基于函数集信息量的模型选择研究 被引量:1

Research on Model Selection Based on Function Set Information Quantity
下载PDF
导出
摘要 提出了子空间信息量(SIQ)和函数集信息量(FSIQ)概念,详细讨论了基于函数集信息量的模型选择问 题,给出了有限含噪声样本下模型选择的近似解决方法,很好地克服了模型选择过程中普遍存在的欠学习和过学列 问题,大大提高了预测模型的泛化性能,在此基础上提出了一种可行的次优模型选择算法。最后通过具体实例验证 了上述方法的可行性和优越性。 The concepts of the Subspace Information Quantity(SIQ) and Function Set Information Quantity(FSIQ) are presented; Then the problem of model selection based on FSIQ are discussed explicitly, and the approximate method of model selection based on limited samples with white noise is proposed, which resolves the problem of underfilling and overfitting of mode! selection and improves the generalization of predict model well. A new suboptimal algorithm for model selection is given, and its reliability and advantage are illustrated through concrete test.
出处 《电子与信息学报》 EI CSCD 北大核心 2005年第4期552-555,共4页 Journal of Electronics & Information Technology
基金 航空基金(01C52015)资助课题
关键词 子空间信息量 函数集信息量 模型选择 统计学习理论 Subspace Information Quantity(SIQ), Function Set Information Quantity(FSIQ), Model selection, Statistical learning theory
  • 相关文献

参考文献16

  • 1张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2278
  • 2Sugiyama M, Ogawa H. Subspace information criterion for model selection. Neural Computation, 2001, 13(8): 1863 - 1889. 被引量:1
  • 3Stolke A. Bayesian learning of probabilistic language models.[Ph.D. Dissertation], University of California, Berkeley, 1994. 被引量:1
  • 4Hemant Ishwaran, Lancelot F, Jiayang Sun. Bayesian model selection in finite mixtures by marginal density decompositions.Journal of the American Statistical Association, 2001, 96(456):1316- 1332. 被引量:1
  • 5Cherkassky V, Shao X, Muller F M, Vapnik V N. Model complexity control for regression using VC generalization bounds IEEE Trans. on Neural Networks, 1999, 10(5): 1075- 1089. 被引量:1
  • 6Barron A R, Cover T M. Minimum complexity density estimation.IEEE Trans. on Information Theory, 1991,37(4): 1034- 1054. 被引量:1
  • 7Yamanishi K. A decision-theoretic extension of stochastic complexity and its application to learning. IEEE Trans. on Information Theory, 1998, 44(4): 1424 - 1439. 被引量:1
  • 8Wood S N. Modelling and smoothing parameter estimation with multiple quadratic penalties.J. Royel Statist. Soc. B, 2000, 62(1):413 - 428. 被引量:1
  • 9Chapelle O, Vapnik V N, Bengio Y. Model selection for small-sample regression. Machine Learning Journal, 2002, 48(I):9- 23. 被引量:1
  • 10Hurvich C M, Tsai C L. Regression and time series model selection in small samples. Biometrika, 1989, 76(13): 297 - 307. 被引量:1

二级参考文献1

共引文献2277

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部