期刊文献+

基于AR-连续HMM的故障诊断模型及应用 被引量:7

A Diagnosis Model Based on AR-Continuous HMM and Its Application
下载PDF
导出
摘要 在状态监测与故障诊断中,被测设备的状态一般不能直接观察到,要通过测量被测设备的表现来感知,这和隐马尔可夫模型(HMM)在本质是相通的。因此可以利用连续高斯密度混合HMM分析被测设备的振动信号,首先以AR模型系数为特征,研究不同状态数与不同混合高斯数对HMM模型分类的影响,再利用较优的状态数与混合高斯数HMM模型进行状态监测和故障诊断,诊断与对比实验结果表明该方法能利用少量样本进行训练和有效诊断。 In condition monitoring and fault diagnosis, because the state of the unit under test(UUT) cannot be observed directly, it should be judged by its behavior. This is similar to Hidden Markov Model(HMM) in nature, so continuous Gaussian mixture HMM is adopted here to analyze the vibration signals of UUT. First through the features based on the reflection coefficients of AR model extracted from vibration signals, the influence of different number of states and Gauss numbers on HMM are investigated, then the HMM with better number of state and Gauss number is used to monitor and diagnose the rolling-bearing′s conditions. The result shows that the proposed method is effective for diagnosis problem with small training samples.
出处 《机械科学与技术》 CSCD 北大核心 2005年第3期350-352,360,共4页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然科学基金项目(50375153) "十.五"部委预研基金项目(41319040202)资助
关键词 滚动轴承 故障诊断 HMM AR模型 Rolling-bearing Fault diagnosis HMM AR model
  • 相关文献

参考文献8

  • 1李先孝著..时间序列分析基础[M].武汉:华中理工大学出版社,1991:251.
  • 2Rabiner L R. A tutorial on hidden markov models and selected applications in speech recognition [ J ]. Proceedings of the IEEE, 1989,77(2) :257 -286. 被引量:1
  • 3Atlas L, et al. Hidden markov models for monitoring maehining tool-wear[J]. IEEE International Conference on Acoustics.Speech, and Signal Processing, 2000. 被引量:1
  • 4Heck L P, McClellan J H. Mechanical system monitoring using HMMs[J]. IEEE International Conference on Acoustics,Speech, and Signal Processing, 1991. 被引量:1
  • 5Ying J, et al. A hidden markov model-based algorithm for online fault diagnosis with partial and imperfect tests[J]. IEEE Midnight-Sun Workshop on Soft Computing Methods in Industrial Applications[ C ].SMCia/99, 1999. 被引量:1
  • 6Hasan O, et al. A new bearing fault detection and diagnosis scheme based on hidden markov modeling of vibration signals[J]. IEEE International Conference on Acoustics, Speech,and Signal Processing. 2001. 被引量:1
  • 7Hatzipantelis E, Murray A, Penman J. Comparing hidden Markov models with artificial neural network architectures for condition monitoring ,applications[ A ]. In : Fourth International Conference on Artificial Neural Networks[ C ]. 1995. 被引量:1
  • 8谢锦辉著..隐Markov模型 HMM 及其在语音处理中的应用[M].武汉:华中理工大学出版社,1995:154.

同被引文献59

引证文献7

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部