摘要
The bifurcation behavior of the CO coupling reactor was examined based on the one-dimensional pseudo homogeneous axial dispersion dynamic model. The method of finite difference was used for solving the boundary value problem; the continuation technique and the direct method were applied to determine the bifurcation diagram. The effects of dimensionless adiabatic temperature rise, Damkohler number, activation energy, heat transfer coefficient and feed ratio on the bifurcation behavior were investigated. It was shown that there existed static bifurcation and the oscillations did not occur in the reactor. The result also revealed that the reactor exhibited at most 1-3-1 multiplicity patterns within the range of practical possible parameters and the measures, such as weakening the axial dispersion of reactor, enhancing heat transfer, decreasing the concentration of ethyl nitrite, were efficient for avoiding the possible risk of multiple steady states.
The bifurcation behavior of the CO coupling reactor was examined based on the one-dimensional pseudohomogeneous axial dispersion dynamic model. The method of finite difference was used for solving the boundary value problem; the continuation technique and the direct method were applied to determine the bifurcation diagram.The effects of dimensionless adiabatic temperature rise, Damkoehler number, activation energy, heat transfer coefficient and feed ratio on the bifurcation behavior were investigated. It was shown that there existed static bifurcation and the oscillations did not occur in the reactor. The result also revealed that the reactor exhibited at most 1-3-1 multiplilicity patterns within the range of practical possible parameters and the measures, such as weakening the axial dispersion of reactor, enhancing heat transfer, decreasing the concentration of ethyl nitrite, were efficient for avoiding the possible risk of multiple steady states.
基金
SupportedbytheNationalNaturalScienceFoundationofChina(No.29906007)theSpecializedResearchFundfortheDoctoralProgramofHigherEducation(2000005610).