期刊文献+

共形平坦Riemannian流形的极小超曲面

Minimal Hypersurfaces of a Conformally Flat Riemannian Manifold
下载PDF
导出
摘要 本文研究了共形平坦Riemannian流形N的紧致浸入极小超曲面M,建立了两个积分不等式,并由此得到了关于M的第二基本形式长度平方S的值域估计。 Let M be a n - dimensional compact oriented hypersurface which is minimally immersed in a conformally flat Riemannian manifold of dimension n+ 1, S is the square of the length of the second fundmental form of this immersion. We have the following results.If the normal direction of M is a Ricci principal direction of N, then Where rc is the infimun of Ricci curvature of N on arbitrary point of M. Therefore if , then M is totally geodesic or (ii)If sectional curvatures of M and N hold everywhere on M, then Therefore if then M is totally geodesic or
出处 《吉首大学学报》 1994年第5期7-10,共4页
关键词 共形平坦 曲率 黎曼流形 超曲面 conformally flat minimal hypersurface Ricci principal direction Ricci curvature
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部