期刊文献+

吴文俊消元法及其在非线性偏微分方程求解中的应用 被引量:2

WU ELIMINATION AND ITS APPLICATIONS IN SEARCH FOR CXACT SOLUTIONS OF NONLINEAR PARTIAL DIFFERENTIAL EQUATION
下载PDF
导出
摘要 本文简要介绍近年新发展的一种求解非线性代数方程组的理论方法——吴文俊消元法及其在非线性偏微分方程准确解研究中的应用范例。吴方法已在定理机器证明以及数理科学、系统科学、计算机科学等领域的前沿课题和高新技术的研究中获得了成功的应用,它有着广阔的应用潜力和发展前景。 A method for solving nonlinear algebraio equations-Wu Elimition,has been developed by Prof.Wu Wenjun in recent years,and its applications in nonlinear partial differential equation are described briefly;The method can be an unified effective procedure in search for travelling wave solutions of nonlinear evolution equations. It has great potentialities,and it has been applied successfully to the theorem mechanical proving and the modelling of problems in methe-matics,physics,computer science,and so on.
作者 李志斌
机构地区 兰州大学数学系
出处 《甘肃科学学报》 1994年第4期23-29,共7页 Journal of Gansu Sciences
关键词 准确解 非线性 偏微分方程 吴文俊消元法 Wu Elimination nonlinear evolution equations exact solutions
  • 相关文献

同被引文献26

  • 1梁学章,张洁琳,崔利宏.多元Lagrange插值与Cayley-Bacharach定理[J].高等学校计算数学学报,2005,27(S1):276-281. 被引量:13
  • 2Zabusky N J,Kruskal M D. Interaction of solitons in a Collisionless plasma and the recurrence of initial states [J]. Physical Review Letters, 1965,15 .. 240-243. 被引量:1
  • 3Hendi A. The extended tanh method and applications for solving nonlinear physical models[J]. International Journal of Research and Reviews in Applied Sciences, 2010,3(1) :83-91. 被引量:1
  • 4Garder C S,Greene J M,Kruskal M D,et al. Method for solving the Korteweg-de Vries equation [J]. Physics Review Letter,1967,19(19) : 1095-1097. 被引量:1
  • 5Hirota R. Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons[J]. Physice Review Letter,1971,27(18)= 1192-1194. 被引量:1
  • 6Miura M R. Backlund transformation [M]. Berlin: Springer-Verlag, 1987. 被引量:1
  • 7Fan Engui. Some new application of homogeneous balance method[J]. Acta Mathematica Scientia, 1999,19 (3) :286 292. 被引量:1
  • 8Liu Yingping,Li Zhibin. An automated calculating for a class of exact solutions to nonlinear differential equations [J]. Journal of East China Normal University: Natural Science,2003(1) : 31-37. 被引量:1
  • 9Yao Ruoxia, Li Zhibin. New exact solutions [or threeevolution equations [J]. Physics Letters: A, 2002, 297 (3/4) .. 196-204. 被引量:1
  • 10Malfliet W. Solitary wave solutions equations[J]. American Journal of (7) :650-654. 被引量:1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部