期刊文献+

一种指数平滑预测的参数优化方法及实现 被引量:11

A Method of Optimizing Parameter of Exponent Smoothing Prediction and Implementation
下载PDF
导出
摘要 时间序列预测法在各种基于时态数据库的计算中有着广泛的应用前景。文中介绍了时间序列预测法中的单指数平滑、双指数平滑和三指数平滑三种指数平滑预测方法,不同的预测方法适合于对不同时间特性的数据、平稳性数据、趋势性数据或季节波动性数据进行预测,使用相应的预测方法均达到很好的平滑效果。同时还介绍了如何应用IGS算法对指数平滑的参数进行优化,从而得到更好的平滑效果和预测结果,使之在社会实际当中发挥更好的作用。 The time series prediction methods have extensive application future in many kinds of computations based on the tense databases.In this paper, the single exponent smoothing, the double exponent smoothing, and triple exponent smoothing are introduced. Different prediction methods are adapted to data with different special properties. And how to use the algorithm IGS to optimize the parameters of the exponent smoothing, through which better smoothing results and prediction results are obtained, is described.And it can bring into play better effect in social practice.
出处 《微机发展》 2005年第3期1-3,41,共4页 Microcomputer Development
基金 上海科委发展基金资助项目(025115036)
关键词 单指数平滑 双指数平滑 三指数平滑 IGS算法 single exponent smoothing double exponent smoothing triple exponent smoothing IGS algorithm
  • 相关文献

参考文献5

二级参考文献19

  • 1Agrawal R,Mamnila H,Srikant R,et al. Fast Discovery of Association Rules. In:Fayyad M,Piatetshy-Shapiro G,Smyth P,eds. Advances in Knowledge Discovery and Data Mining, Menlo Park,California: AAAI/MIT Press, 1996. 307 ~ 328 被引量:1
  • 2Chen X,Petrounias I. A framework for temporal data mining. In:Quirchmayr G,et al. eds. Proc. Ninth Intl. Conf. on Database and Expert Systems Applications, DEXA' 98, Vienna, Austria, Lecture Notes in Computer Science, 1460. Springer-Verlag, 1998. 796 ~805 被引量:1
  • 3Agrawl R,Strikant R. Mining Sequential Patterns. In: Proc. of the 11th Int' 1 Conf. on Data Engineering, Taipei, Taiwan, IEEE Computer Society Press,March 1995.3~14 被引量:1
  • 4Agrawl R,Strikant R. Mining Sequential Patterns:Generalizations and Performance Improvements. In: Proc. Intl. Conf. on Extending Database Technology. EDBT' 96. Avignon France 被引量:1
  • 5Mannila H, Toivonen H, Verkamo A I. Discovering frequent episodes in sequences. In: Proc. First Intl. Conf. on Knowledge Discovery and Data Mining (KDD-95), Montreal, Quebec, Canada. AAAI Press ,Menlo Park,California. 1995. 210~215 被引量:1
  • 6Weigend A S,Gershenfeld N A. Time Series Prediction:Forecasting the Future and Understanding the Past, eds. Reading, MA:Addison-Welsley, 1993 被引量:1
  • 7Povinelli R. Identifying Temporal Patterns for Characterization and Prediction of Financial Time Series Events. In Proc. International Workshop on Temporal, Spatial and Spatio-Temporal Data Mining,TSDM2000, Lyon, France. Lecture Notes in Artificial Intelligence, 2007. Roddick, J. F. and Hornsby, K. , Eds. , Springer.2000 被引量:1
  • 8Agrawal R, Psaila G, Wimmers E L, Zaot M. Querying shapes of histories. In:Dayal U,et al. eds. Proc. Twenty-first Intl. Conf. on Very Large Databases (VLDB '95), Zurich,Switzerland. Morgan Kaufmann Publishers,Inc. San Francisco,USA. 1995. 502~514 被引量:1
  • 9Das G,Gunopulos D,Mannila H. Finding similar time series. In:J.Komorowski,et al. ,eds. Proc. of the 1st European Symposium on Principle of Data Mining and Knowledge Discovery (PKDD'97),vol. 1263 of LNAI, Springer, 1997.88~ 100 被引量:1
  • 10Agrawal R,et al. Fast Similarity Search in the Presence of Noise, Scaling.and Translation in Time -Series Databases. In: U. Dayal,P. M. D. Gray,S. Nishio,eds. Proc. of the 21st VLDB Conference Zurich,Switzerland 1995,Morgan Kaufmann,1995. 490~501 被引量:1

共引文献37

同被引文献78

引证文献11

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部