摘要
考虑含分段常数变元的微分方程x(t)-ax(2[(t+1)/2])=0,其中a是实数,[]表示最大整数函数,给出该方程的零解非渐近稳定的充分条件以及方程只有有界解的充要条件。
The differential equation with piecewise constant argumentx(t)+ax(2[(t+1)/2])=0 is considered, where a is a real number, [ · ] denotes the greatest integer function. A sufficient condition for Nonasymptotic stability of trivial solution as well as a sufficient and necessary condition for boundedness of all solutions of the equation are given.
出处
《厦门大学学报(自然科学版)》
CAS
CSCD
北大核心
1993年第5期533-536,共4页
Journal of Xiamen University:Natural Science
关键词
稳定性
有界性
微分方程
Piecewisc constant argument, Stability, Boundedness